Scope and sequence Mathematics Year 7 to 10

V1.0
September 2020

Mathematics: Scope and sequence year 7 to 10

Contents

Context statement
Achievement standards
Scope and sequence

- Strand: Number and algebra
- Sub-strand: Number and place value
- Sub-strand: Fractions and decimals
- Sub-strand: Real numbers
- Sub-strand: Money and financial mathematics
- Sub-strand: Patterns and algebra
- Sub-strand: Linear and non-linear relationships

Achievement standards
Scope and sequence

- Strand: Measurements and geometry
- Sub-strand: Using units of measurement
- Sub-strand: Shape
- Sub-strand: Location and transformation
- Sub-strand: Geometric reasoning
- Sub-strand: Pythagoras and trigonometry

Achievement standards

Scope and sequence

- Strand: Statistics and probability
- Sub-strand: Chance
- Sub-strand: Data representation and interpretation

Context statement

 content is explored or developed.
 and when they compare and contrast ideas and explain their choices.
Links between the various components of mathematics, are made clear and taught as interconnected skills.
 communicators of mathematics.

The South Australian Mathematics Scope and Sequence R-10:

- provides the achievement standards positioned with related strands; number and algebra, measurement and geometry statistics and probability
- makes the relationship between achievement standards and content explicit through listing the achievement standards alongside the relevant content descriptors
- emphasises the progression of skills by highlighting the verbs to emphasise the development of skills across the curriculum
- supports clarity by breaking achievement standards into dot points
- provides the sequence of content and sequence of achievement
- includes content descriptors listed with their associated elaborations.

Achievement standards

Strand: Number and algebra

 formulate generalisations. They recognise equivalence and solve equations and inequalities. They apply their number and algebra skills to conduct investigations, solve problems and communicate their reasoning. formula

By the end of year 7, students:

- solve problems involving the order, addition and
subtraction of integers
- make the connections between whole numbers and index notation
- make the connections between the relationship between perfect squares and square roots
- solve problems involving all four operations with fractions, decimals, percentages and their equivalences, and express fractions in their simplest form
- compare the cost of items to make financial decisions, with and without the use of digital technology
- make simple estimates to judge the reasonableness of results
- use variables to represent arbitrary numbers and connect the laws and properties of number to algebra
- substitute numbers into algebraic expressions
- assign ordered pairs to given points on the Cartesian plane
- interpret and analyse graphs of relations from real data
- develop simple linear models for situations, make predictions based on these models, solve related equations and check their solutions.

Scope and sequence

Sub-strand	Year 7	Year 8	Year 9	Year 10	Year 10A
Number and place value	Investigate index notation and represent whole numbers as products of powers of prime numbers: - define and compare prime and composite numbers and explain the difference between them - apply knowledge of factors to expressing whole numbers as products of powers of prime factors, such as repeated division by prime factors or create factor trees - solve problems involving lowest common multiples and highest common factors for pairs of whole numbers by comparing their prime factorisation.	Use index notation with numbers to establish the index laws with positive integral indices and the zero index: - evaluate numbers expressed as powers of positive integers - investigate and establish the index laws: - multiplication law - division law - power to power with the same base - apply and simplify expressions using index laws - remove brackets and simplify - express in simplest form - investigate and establish the zero index law.			
	Investigate and use square roots of perfect square numbers: - investigate square numbers such as 25 and 36 and developing square-root notation - investigate between which two whole numbers a square root lies. Apply the associative, commutative and distributive laws to aid mental and written computation: - understand that arithmetic laws are powerful ways of describing and simplifying calculations and provide many opportunities to manipulate numbers. Compare, order, add and subtract integers: - the rule of BEDMAS - explore other rules such as more than one set of brackets and evaluate fractions.	Carry out the four operations with rational numbers and integers, using efficient mental and written strategies and appropriate digital technologies: - recognise rational numbers are the set of all numbers that can be expressed as fractions - recognise the decimal expansion of a rational number is either terminating or recurring - use the number line to develop strategies for adding and subtracting rational numbers - use patterns to assist in finding rules for the multiplication and division of integers - evaluate adding and subtracting fractions with lowest common denominator - simplify fractions and mixed numbers - multiply and divide fractions, cancel common factors and multiply numerators and then denominators together - divide by a fraction, then multiply the reciprocal of the fraction.			
Fractions and decimals					

	- recognise non-terminating decimals may be recurring, that is, contain a pattern of digits that repeats indefinitely after a certain number of places - recognise irrational numbers can only be approximated in the decimal number system.				
	Connect fractions, decimals and percentages and carry out simple conversions: - describe the choices of written, mental or calculator strategies for solving problems, including those involving large numbers - understand that quantities can be represented by different number types and calculated using various operations, and that choices need to be made about each - calculate the percentage of the total local municipal area set aside for parkland, manufacturing, retail and residential dwellings to compare land use. Find percentages of quantities and express one quantity as a percentage of another, with and without digital technologies: - express quantities as percentages of other amounts.				
	Recognise and solve problems involving simple ratios: - understand that rate and ratio problems can be solved using fractions or percentages - determine the most efficient form to solve a particular problem.				
Money and financial mathematics	Investigate and calculate 'best buys', with and without digital technologies: - apply the unitary method to identify 'best buys' situations - use measurement to estimate and measure with metric units, such as comparing the cost per 100 g - estimate and calculate with whole numbers and apply this to the use of money.	Solve problems involving profit and loss, with and without digital technologies: - express profit and loss as a percentage of cost and selling price, comparing the difference - represent profit and loss as a percentage of the cost price - investigate the methods used in retail stores to express discounts - explore discount, selling price and GST.	Solve problems involving simple interest: - understand that financial decisions can be assisted by mathematical calculations - explore simple interest to establish the simple interest formula - identify areas where investments are over a period of months or days and interest rates are quoted as per annum.	Connect the compound interest formula to repeated applications of simple interest using appropriate digital technologies: - explore the comparison between compound interest and simple interest, and which grows more rapidly - work with authentic information, data and interest rates to calculate compound interest and solve related problems.	

Patterns and algebra	Introduce the concept of variables as a way of representing numbers using letters: - recall BEDMAS - explore the use of symbols to represent numbers - use the terminology variable or unknown - understand that arithmetic laws are powerful ways of describing and simplifying calculations and that using these laws leads to the generality of algebra - establish the arithmetic laws: - commutative law such as: $3+4=4+3$ and $3 \times 4=4 \times 3$ and relate to everyday such as 'to school' and 'from school' - associative law such as: $(2+3)+4=2+(3+4)$, the numbers do not move only the brackets, and $2 \times(3 \times 4)=(2 \times 3) \times 4$ - distributive law such as: $3(2+5)$ is $3 \times 7=21$, and $3 \times 2+3 \times 5$ is $6+15=21$ That is $3(2+5)=3 \times 2+3 \times 5 .$	Extend and apply the distributive law to the expansion of algebraic expressions: - apply the distributive law to the expansion of algebraic expressions by revising the concept of perimeter to lead to the area model - connect the result of the distributive law is the expansion - apply collecting like terms and its meaning - explore the distributive law with negative coefficient - explore the distributive law with a variable.	Extend and apply the index laws to variables, using positive integer indices and the zero index: - develop that index laws apply to variables as well as numbers. Consider some expressions, their factors and their simplification - recall Index laws with variables: - multiply - divide - raising power to power - power of a product - power of a quotient - power of zero - investigate negative index law with numbers - connect with the meaning of reciprocals - apply negative index law with variables.	Factorise algebraic expressions by taking out a common algebraic factor: - recall process of factorisation, product of factors and highest common factor - use the distributive law and the index laws to factorise algebraic expressions - understand the relationship between factorisation and expansion - factorise the algebraic expression: - common Factors - difference of two squares - perfect squares - sum and product - trial and error - four terms by grouping in pairs.	Investigate the concept of a polynomial and apply the factor and remainder theorems to solve problems: - explore the polynomials and name each polynomial - describe terms of a polynomial - explore function notation - expand and simplify polynomials - explore division of polynomials and establish terms, dividend, divisor, quotient and remainder - investigate the relationship between algebraic long division and the factor and remainder theorems - explore solving polynomial equations, graphing polynomial equations and applications.
	Create algebraic expressions and evaluate them by substituting a given value for each variable: - write algebraic expressions with one variable and then two variables - establish keywords: variable, numeral, expression, equation, terms, like terms, coefficient and constant term - use authentic formulas to perform substitutions and calculate the result - perform negative substitutions and calculate the result.	Factorise algebraic expressions by identifying numerical factors: - recognise the relationship between factorising and expanding - identify the greatest common divisor (highest common factor) of numeric and algebraic expressions and using a range of strategies to factorise algebraic expressions.	Apply the distributive law to the expansion of algebraic expressions, including binomials algebraic expressions, including binomials, and collect like terms where appropriate: - understand that the distributive law can be applied to algebraic expressions as well as numbers - connect the relationship between expansion and factorization - identify algebraic factors in algebraic expressions - consider the expansions: - the product - difference of two squares - perfect squares - binomial expansion - consider $(a+b)(c+d+e)$.	Simplify algebraic products and quotients using index laws: - apply knowledge of index laws to algebraic terms - simplify algebraic expressions using both positive and negative integral indices.	

Patterns and algebra	Extend and apply the laws and properties of arithmetic to algebraic terms and expressions: - identify order of operations in contextualised problems, preserving the order by inserting brackets in numerical expressions, then recognising how order is preserved by convention - convert between algebraic and word representations as descriptions of the same situation.	Simplify algebraic expressions involving the four operations: - understand that the laws used with numbers can also be used with algebra.		Apply the four operations to simple algebraic fractions with numerical denominators: - express the sum and difference of algebraic fractions with a common denominator - develop the four operations to algebraic fractions with variables in the denominator - use the index laws to simplify products and quotients of algebraic fractions.	
				Expand binomial products and factorise monic quadratic expressions using a variety of strategies: - explore the method of completing the square to factorise quadratic expressions and solve quadratic equations - identify and using common factors, including binomial expressions, to factorise algebraic expressions using the technique of grouping in pairs - use the identities for perfect squares and the difference of squares to factorise quadratic expressions.	
				Substitute values into formulas to determine an unknown: - solve simple equations arising from formulas - solve equations with repeated unknowns - solve equations with fractions - apply to linear equations and problem solving.	
Linear and non-linear relationships	Given coordinates, plot points on the Cartesian plane, and find coordinates for a given point: - explore map references - describe number grids, x-axis, y-axis, origin, x and y coordinates, ordered pairs and points on axes - connect the number line and number plane, leading to the four quadrants - plot points from a table of integer values and recognise simple patterns, such as points that lie on a straight line.	Plot linear relationships on the Cartesian plane with and without the use of digital technologies: - recall number grids, x-axis, y-axis, origin, x and y coordinates, ordered pairs, points on axes, number plane and the four quadrants - complete a table of values, plotting the resulting points and determining whether the relationship is linear - plot graphs of linear equations - explore the types of graphs such as steepness, sloping forward, sloping backwards, vertical lines and horizontal lines, using technology - find the rule for a linear relationship.	Find the distance between two points located on the Cartesian plane using a range of strategies, including graphing software: - investigate graphical and algebraic techniques for finding distance between two points - use Pythagoras' theorem to calculate the distance between two points and establish the distance formula.	Solve problems involving linear equations, including those derived from formulas: - represent word problems with simple linear equations and solving them to answer questions.	Describe, interpret and sketch parabolas, hyperbolas, circles and exponential functions and their transformations: - recall the connection between algebraic and graphical representations of relations such as parabolas, reciprocals, circles and exponentials - apply transformations, including translations, reflections in the axes and stretches to help graph parabolas, rectangular hyperbolas, circles and exponential functions.

- explore solving equations by inspection, guess, check and improve and introduce maintaining balance of an equation
- solve equations using concrete materials, such as the balance model, and explain the need to do the same thing to each side of the equation
- use substitution to check solutions investigate strategies such as inverse
operations and flowcharts to solve operations
equations.

Investigate, interpret and analyse graphs from real life data, including consideration of domain and range:

- explore properties of line graphs, such as dependent and independent variables
- explore increasing and decreasing graphs
- estimate from line graphs
- develop the relationship between the time taken and distance travelled in line graphs
- use travel graphs to investigate and compare the distance travelled to and from school
- interpret features of travel graphs such as the slope of lines and the meaning of horizontal lines
- use graphs of evaporation rates to explore water storage.

Solve linear equations using algebraic and graphical tech
substitution:

- solve real life problems by using variables to represent unknowns.

Plot graphs of non-linear real-life data with and
without the use of digital technologies, and without the use of digital technologies, and interpret and analyse these graphs.
ind the midpoint and gradient of a line segment (interval) on the Cartesian plane using a range of strategies, including graphing software:

- investigate graphical and algebraic techniques for finding midpoint and gradient
- describe the steepness and gradient of a line using vertical (y step) and horizontal (x step) steps, gradient formula and gradient of horizontal and vertical lines
- recognise that the gradient of a line is the same as the gradient of any line segment on that line
- apply gradient as the rate of change to problem solving
- investigate gradients of parallel and perpendicular lines.

Sketch linear graphs using the coordinates of two points and solve linear equations:

- determine linear rules from suitable diagrams, tables of values and graphs and describe them using both words and algebra.

Solve linear inequalities and graph their
solutions on a number line:

- recall inequalities and number line representation
- investigate four operations with inequalities and establish the rules
- solve algebraic inequality equations and find the unknown
- represent word problems with simple linear inequalities and solve them to answer questions.

Solve linear simultaneous equations, using algebraic and graphical techniques, including using digital technology:

- investigate graphical solution by graphing and using technology
- investigate solution by substitution
- investigate solution by elimination
- describe the form of simultaneous equations and apply either substitution or elimination methods
- associate the solution of simultaneous equations with the coordinates of the intersection of their corresponding graphs
- represent word problems as simultaneous equations and solve them to answer questions.

Solve simple exponential equations:

- describe exponential equations
- solve exponential equations by equating indices when both sides have the same base
- use technology to solve exponential equations if possible
- investigate exponential equations derived from authentic mathematica models based on population growth
- solve exponential equations using logarithm rules and applications.

Apply understanding of polynomials to sketch a range of curves and describe the features of these curves from their equation:

- investigate the features of graphs of polynomials such as cubics and quartics using technology to include:
- shape and the effect of leading coefficient
- axes intercepts
- the effect of repeated factors
- apply the null factor law and remainder theorem to sketch the graph
- apply this to higher degree polynomials
- explore application problems.

			Graph simple non-linear relations with and without the use of digital technologies and solve simple related equations: - investigate the properties of parabolas (using technology), identifying turning point (vertex), axes intercepts, and the axis of symmetry - graph parabolas from: - table of values, - axes intercepts - investigate the connection with the number of x-axes intercepts and the x-axis - explore the equation of a circle using the distance formula, then graph the circle - describe the equation of a circle, in factored and general form - connect x-intercepts of a graph to a related equation.	Solve problems involving gradients of parallel and perpendicular lines: - solve problems using the fact that parallel lines have the same gradient and conversely that if two lines have the same gradient then they are parallel - solve problems using the fact that the product of the gradients of perpendicular lines is -1 and conversely that if the product of the gradients of two lines is -1 then they are perpendicular - use the negative reciprocal to determine perpendicular lines.	Factorise monic and non-monic quadratic expressions and solve a wide range of quadratic equations derived from a variety of contexts: - recall the process of factorization - solve monic quadratics, $a=1$ - solve non-monic quadratics, $a \neq 1$ - write quadratic equations that represent practical problems.
				Explore the connection between algebraic and graphical representations of relations such as simple quadratics, reciprocals, circles and exponentials using digital technology as appropriate: - recall briefly sketching graphs of parabolas using a table - use technology to establish graphing quadratics using transformations - discover the properties of the parabola including axes intercepts - establish reciprocal functions and their properties using a table and technology - recall the equation of a circle - use technology if possible to establish graphing circles using transformations - apply translations, reflections and stretches to parabolas and circles - establish exponential functions and their properties using a table and technology - sketch the graphs of exponential functions using transformations - explore situations where quantities are increasing or decreasing exponentially to infer growth and decay situations - apply this to problem solving situations.	e function notation to describe the ationship between dependent and dependent variables in modelling contexts: - connect y and $f(x)$ - describe $f(x)$ as " f of x " - explore composite functions - explore inverse functions - use function notation in modelling context.

				Solve linear equations involving simple algebraic fractions: - solve a wide range of linear equations, including those involving one or two simple algebraic fractions, and checking solutions by substitution - recall problem solving method and steps - represent word problems, including those involving fractions, as equations and solving them to answer the question.	ve simultaneous equations using the stematic guess-check-and-refine method with ital technology: - recall solution using graphing, substitution and elimination - use technology to solve simultaneous equations - apply this to problem solving with simultaneous equations and check your solution.
				Solve simple quadratic equations using a range of strategies: - recall steps for solving equations - use a variety of techniques to solve quadratic equations: - grouping - completing the square and establish the properties - the quadratic formula - use the discriminant to identify a number of solutions - choosing two integers with the required product and sum - null factor law. Solve equations using the systematic guess-check-and-refine method with digital technology.	

Achievement standards

Strand: Measurement and geometry

Year 7	Year 8	Year 9	Year 10	Year 10A
By the end of year 7, students:	By the end of year 8, students:	By the end of year 9, students:	By the end of year 10, students:	

- use formulas for the area and perimeter of rectangles
- classify triangles and quadrilaterals
- represent transformations of these shapes on the Cartesian plane, with and without the use of digital technology
- name the types of angles formed by transversals crossing parallel lines
- solve simple numerical problems involving these lines and angles
- describe different views of threedimensional objects and use models, sketches and digital technology to represent these views
- calculate volumes of rectangular prisms.

By the end of year 8, students:
convert between units of measurement for area and for volume

- find the perimeter and area of parallelograms, rhombuses and kites
name the features of circles
- calculate circumference and area
- solve problems relating to the volume of prisms
- make sense of time duration in real applications, including the use of 24 -hour time
- identify conditions for the congruence of triangles
- deduce the properties of quadrilaterals
- use tools, including digital technology, to construct congruent shapes.

By the end of year 9 , students:

- solve measurement problems involving perimeter and area of composite shapes
- surface area and volume of rectangular prisms and cylinders, with and without the use of digital technology
- relate three-dimensional objects to twodimensional representations
- interpret ratios and scale factors in similar figures
- apply Pythagoras's theorem and trigonometry to solve problems involving angles and lengths in right-angled triangles.

By the end of year 10, students:

- solve and explain surface area and volume problems relating to composite solids
- use parallel and perpendicular lines, angle and triangle properties to solve practical problems
- use similarity to solve practical problems
- use trigonometry to solve practical problems
- use congruence to solve practical problems
- develop proofs involving lengths, angles and areas in plane shapes
- use digital technology to construct and manipulate geometric shapes and objects
- explore symmetry and pattern in two dimensions.

Sub-strand	Year 7	Year 8	Year 9	Year 10	Year 10A
Units of measurement	Establish the formulas for areas of rectangles, triangles and parallelograms, and use these in problem-solving: - build on the understanding of the area of rectangles to develop formulas for the area of triangles - establish that the area of a triangle is half the area of an appropriate rectangle - use area formulas for rectangles and triangles to solve problems involving areas of surfaces.	Choose appropriate units of measurement for area and volume and convert from one unit to another: - choose units for area including mm^{2}, $\mathrm{cm}^{2}, \mathrm{~m}^{2}$, hectares, km^{2}, and units for volume including $\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}$ - recognise that the conversion factors for area units are the squares of those for the corresponding linear units - recognise that the conversion factors for volume units are the cubes of those for the corresponding linear units.	Calculate areas of composite shapes: - recall area of squares, rectangles, triangles, parallelograms, trapeziums, rhombus, kites and circles - establish area of sectors - understand that partitioning composite shapes into rectangles and triangles is a strategy for solving problems involving area.		
	Calculate volumes of rectangular prisms: - investigate volumes of cubes and rectangular prisms, establish and use the formula $V=1 \times b \times h$ - recognise and use cubic units when interpreting and finding volumes of cubes and rectangular prisms.	Find perimeters and areas of parallelograms, trapeziums, rhombuses and kites: - establish and use formulas for areas such as trapeziums, rhombuses and kites - use these formulas in problem-solving.	Calculate the surface area and volume of cylinders and solve related problems: - analyse nets of cylinders to establish formulas for surface area - connect the volume and capacity of a cylinder to solve authentic problems. Solve problems involving the surface area and volume of right prisms: - recall volume of rectangular and triangular prisms - solve practical problems involving surface area and volume of right prisms.	Solve problems involving surface area and volume for a range of prisms, cylinders and composite solids: - recall formulas of area, volume, and conversions - investigate and determining the volumes and surface areas of composite solids by considering the individual solids from which they are constructed.	Solve problems involving surface area and volume of right pyramids, right cones, spheres and related composite solids: - use formulas to solve problems - use authentic situations to apply knowledge and understanding of surface area and volume.
		Investigate the relationship between features of circles such as radius, diameter, circumference and area. Recall the irrational number π from the real number strand: - investigate the circumference and area of circles with materials or by measuring, to establish an understanding of formulas OR - investigate the area of circles using a square grid or by rearranging a circle divided into sectors. Use formulas to solve problems involving circumference and area in the same context.			

Sub-strand	Year 7	Year 8	Year 9	Year 10	Year 10A
		Develop formulas for volumes of rectangular and triangular prisms and prisms in general. Use formulas to solve problems involving volume and other prisms: - investigate the relationship between volumes of rectangular and triangular prisms (between units) - explore the volume of cylinders - explore capacity conversions and problem solving.			
		Solve problems involving duration, including using 12 - and 24 -hour time within a single time zone: - identify regions in Australia and countries in Asia that are in the same time zone.	Investigate very small and very large time scales and intervals - investigate the usefulness of scientific notation in representing very large and very small numbers		
Shape	Draw different views of prisms and solids formed from combinations of prisms: - use aerial views of buildings and other 3-D structures to visualise the structure of the building or prism.				
Location and transformation	Describe translations, reflections in an axis and rotations of multiples of 90° on the Cartesian plane using coordinates. Identify line and rotational symmetries: - describe patterns and investigate different ways to produce the same transformation such as using two successive reflections to provide the same result as a translation - experiment with creating and recreating patterns using combinations of reflections and rotations, using digital technologies.				

Sub-strand	Year 7	Year 8	Year 9	Year 10	Year 10A
Geometric reasoning	Identify corresponding, alternate and co-interior angles when two straight lines are crossed by a transversal: - define and classifying pairs of angles as complementary, supplementary, adjacent and vertically opposite - explore the relationship of angles and parallel lines.	Define congruence of plane shapes using transformations and use transformations of congruent shapes to produce regular patterns in the plane including tessellations with and without the use of digital technology: - recall corresponding, alternate and cointerior angles, and complementary, supplementary, adjacent and vertically opposite angles - understand the properties that determine congruence of triangles and recognise which transformations create congruent figures - establish that two figures are congruent if one shape lies exactly on top of the other after one or more transformations (translation, reflection, rotation), and recognise that the matching sides and the matching angles are equal. Develop the conditions for congruence of triangles: - investigate the minimal conditions needed for the unique construction of triangles, leading to the establishment of the conditions for congruence (SSS, SAS, ASA and RHS) - construct triangles using the conditions for congruence - solve problems using the properties of congruent figures.	Use the enlargement transformation to explain similarity and develop the conditions for triangles to be similar: - establish the conditions for similarity of two triangles and compare this to the conditions for congruence - use the enlargement transformation to establish similarity, understanding that similarity and congruence help describe relationships between geometrical shapes and are important elements of reasoning and proof - use the properties of similarity and ratio, and correct mathematical notation and language, to solve problems involving enlargement (for example, scale diagrams). Solve problems using ratio and scale factors in similar figures: - establish the relationship between areas of similar figures and the ratio of corresponding sides (scale factor).	Apply logical reasoning, including the use of congruence and similarity, to proofs and numerical exercises involving plane shapes: - distinguish between a practical demonstration and a proof (for example demonstrating triangles are congruent by placing them on top of each other, as compared to using congruence tests to establish that triangles are congruent) - perform a sequence of steps to determine an unknown angle and side, giving a justification in moving from one step to the next - communicate a proof using a sequence of logically connected statements. Formulate proofs involving congruent triangles and angle properties: - apply an understanding of relationships to deduce properties of geometric figures (for example the base angles of an isosceles triangle are equal).	Prove and apply angle and chord properties of circles: - establish circle theorems - perform a sequence of steps to determine an unknown angle or length in a diagram involving a circle, or circles, giving a justification in moving from one step to the next - communicate a proof using a logical sequence of statements - prove results involving chords, segments, angles and tangents of circles.
	Investigate conditions for two lines to be parallel and solve simple: numerical problems using reasoning: - construct parallel and perpendicular lines using their properties, a pair of compasses and a ruler, and dynamic geometry software - define and identifying the relationships between alternate, corresponding and co-interior angles for a pair of parallel lines cut by a transversal.				

Sub-strand	Year 7	Year 8	Year 9	Year 10	Year 10A
	Demonstrate that the angle sum of a triangle is 180° and use this to find the angle sum of a quadrilateral: - use concrete materials and digital technologies to investigate the angle sum of a triangle and quadrilateral.	Establish properties of quadrilaterals using congruent triangles and angle properties, and solve related numerical problems using reasoning: - establish the properties of squares, rectangles, parallelograms, rhombuses, trapeziums and kites - identify properties related to side lengths, parallel sides, angles, diagonals and symmetry.			
	Classify triangles according to their side and angle properties and describe quadrilaterals: - identify side and angle properties of scalene, isosceles, right-angled and obtuse-angled triangles - describe squares, rectangles, rhombuses, parallelograms, kites and trapeziums.				
Pythagoras and trigonometry			Investigate Pythagoras' theorem and its application to solving simple problems involving right-angled triangles: - investigate Pythagoras' theorem using area of sides and establish the formula - understand that Pythagoras' theorem is a useful tool in determining unknown lengths in right-angled triangles and has widespread applications - explore the converse test of Pythagoras' theorem and Pythagorean triples - recognise that right-angled triangle calculations may generate results that can be integers, fractions or irrational numbers - solve problems using Pythagoras' theorem.	Solve right-angled triangle problems including those involving direction and angles of elevation and depression: - recall Pythagoras' theorem, its converse and Pythagorean triples - solve problems using Pythagoras' theorem, including triangles, quadrilaterals, circles, angles of elevation and depression and trigonometry - apply Pythagoras' theorem and trigonometry to problems in surveying and design.	Establish the sine, cosine and area rules for any triangle and solve related problems: - explore and establish the sine rule and cosine rule - establish the area of a non-right angled triangle - solve problems using the knowledge of sine, cosine and area rules - apply knowledge of sine, cosine and area rules to authentic problems such as those involving surveying and design.
			Use similarity to investigate the constancy of the sine, cosine and tangent ratios for a given angle in right-angled triangles: - develop the understanding of the relationship between the corresponding sides of similar rightangled triangles and the angle.		Use the unit circle to define trigonometric functions, and graph them with and without the use of digital technologies: - explore the circle with centre the origin and radius 1 unit - establish the unit circle equation with centre the origin and radius 1 unit, and its properties - establish the symmetrical properties of trigonometric functions, such as the relationship between sine and cosine - investigate angles of any magnitude - recognise that trigonometric functions are periodic, and that this can be used to describe motion.

Sub-strand	Year 7	Year 8	Year 9	Year 10	Year 10A
			Apply trigonometry to solve right-angled triangle problems: - understand the terms 'adjacent' and 'opposite' sides in a right-angled triangle - select and accurately use the correct trigonometric ratio to find unknown sides (adjacent, opposite and hypotenuse) and angles in right-angled triangles - solve problems using trigonometric ratios.		Solve simple trigonometric equations: - use periodicity and symmetry to solve equations with and without technology.
					Apply Pythagoras' theorem and trigonometry to solving three-dimensional problems in rightangled triangles: - investigate the applications of Pythagoras' theorem in authentic problems.

Achievement standards

Strand: Statistics and probability

 chance and data concepts and make reasoned judgements and decisions, as well as building skills to critically evaluate statistical information and develop intuitions about data.

Year 7 ,

- identify issues involving the collection of discrete and continuous data from primary and secondary sources
construct stem-and-leaf plots
- construct dot-plots
- identify or calculate mean, mode, median and range for data sets, using digital technology for larger data sets
describe the relationship between the median and mean in data displays
- determine the sample space for simple experiments with equally likely outcomes, and assign probabilities outcomes.

By the end of year 8, students:	Year 9

- explain issues related to the collection of sample data
- discuss the effect of outliers on means and medians of the data
- use various approaches, including the use of digital technology, to generate simple random samples from a population
- model situations with Venn diagrams and explain the use of 'not', 'and' and 'or'
- model situations with two-way tables and explain the use of 'not', 'and' and 'or'
- choose appropriate language to describe events and experiments
- determine complementary events
- calculate the sum of probabilities. and secondary sources types

Year 10
By the end of year 10, students:
Year 10A

- compare techniques for collecting data from primary
- identify questions and issues involving different data
- construct histograms and back-to-back stem-and-leaf plots with and without the use of digital technology
- identify mean and median in skewed, symmetric and bi-modal displays and use these to describe and interpret the distribution of the data
- calculate relative frequencies to estimate probabilities
- list outcomes for two-step experiments and assign probabilities for those outcomes and related events.

Scope and sequence

Sub-strand	Year 7	Year 8	Year 9	Year 10	Year 10A
Chance	Construct sample spaces for single-step experiments with equally likely outcomes: - explore the meaning of probability terminology (for example probability, sample space, favourable outcomes, trial, events and experiments) - distinguish between equally likely outcomes and outcomes that are not equally likely.	Identify complementary events and use the sum of probabilities to solve problems: - recall the concept of probabilities, outcomes, sample spaces and events - identify the complement of familiar events - understand that probabilities range between 0 to 1 - calculate the probability of an event allows the probability of its complement to be found.	List all outcomes for two-step chance experiments, both with and without replacement using tree diagrams or arrays. Assign probabilities to outcomes and determine probabilities for events: - conduct two-step chance experiments - use systematic methods to list outcomes of experiments and to list outcomes favorable to an event - compare experiments which differ only by being undertaken with replacement or without replacement.	Describe the results of two- and three-step chance experiments, both with and without replacements, assign probabilities to outcomes and determine probabilities of events. Investigate the concept of independence: - recognise that an event can be dependent on another event and that this will affect the way its probability is calculated.	Investigate reports of studies in digital media and elsewhere for information on their planning and implementation: - evaluate the appropriateness of sampling methods in reports where statements about a population are based on a sample - evaluate whether graphs in a report could mislead, and whether graphs and numerical information support the claims.
	Assign probabilities to the outcomes of events and determine probabilities for events: - express probabilities as decimals, fractions and percentages.	Describe events using language of 'at least', exclusive 'or' (A or B but not both), inclusive 'or' (A or B or both) and 'and': - pose 'and', 'or' and 'not' probability questions about objects or people.	Calculate relative frequencies from given or collected data to estimate probabilities of events involving 'and' or 'or': - use Venn diagrams or two-way tables to calculate relative frequencies of events involving 'and', 'or' questions - use relative frequencies to find an estimate of probabilities of 'and', 'or' events.	Use the language of 'if ... then', 'given', 'of', 'knowing that' to investigate conditional statements and identify common mistakes in interpreting such language: - use two-way tables and Venn diagrams to understand conditional statements - use arrays and tree diagrams to determine probabilities.	
		Represent events in two-way tables and Venn diagrams and solve related problems: - use Venn diagrams and two-way tables to calculate probabilities for events, satisfying 'and', 'or' and 'not' conditions - understand that representing data in Venn diagrams or two-way tables facilitates the calculation of probabilities - collect data to answer the questions using Venn diagrams or two-way tables.	Investigate reports of surveys in digital media and elsewhere for information on how data were obtained to estimate population means and medians: - investigate a range of data and its sources, for example the age of residents in Australia, Cambodia and Tonga; the number of subjects studied at school in a year by 14 -year-old students in Australia, Japan and TimorLeste.		
Data representation and interpretation	Identify and investigate issues involving numerical data collected from primary and secondary sources: - obtain secondary data from newspapers, the Internet and the Australian Bureau of Statistics - investigate secondary data relating to the distribution and use of nonrenewable resources around the world.	Distinguish between a population and a sample and Investigate techniques for collecting data, including census, sampling and observation: - identify situations where data can be collected by census and those where a sample is appropriate.	Identify everyday questions and issues involving at least one numerical and at least one categorical variable, and collect data directly and from secondary sources: - compare the annual rainfall in various parts of Australia, Pakistan, New Guinea and Malaysia.	Determine quartiles and interquartile range and investigate the effect of individual data values, including outliers, on the interquartile range: - find the five-number summary (minimum and maximum values, median and upper and lower quartiles) and using its graphical representation, the box plot, as tools for both numerically and visually comparing the centre and spread of data sets, with and without technology.	Calculate and interpret the mean and standard deviation of data and use these to compare data sets: - use the standard deviation to describe the spread of a set of data - use the mean and standard deviation to compare numerical data sets.
	Construct and compare a range of data displays including stem-and-leaf plots and dot plots:	Explore the practicalities and implications of obtaining data through sampling using a variety of investigative processes:	Construct back-to-back stem-and-leaf plots and histograms and describe data, using terms including 'skewed', 'symmetric' and 'bi modal':	Construct and interpret box plots and use them to compare data sets:	Use information technologies to investigate bivariate numerical data sets.

Sub-strand	Year 7	Year 8	Year 9	Year 10	Year 10A
	- recognise that some data representations are more appropriate than others for particular data sets, and answering questions about those data sets - use ordered stem-and-leaf plots to record and display numerical data collected in a class investigation, such as constructing a class plot of height in centimetres on a shared stem-and-leaf plot for which the stems $12,13,14,15$, 16 and 17 have been produced.	- investigate the uses of random sampling to collect data - explore the categorical and numerical types of data - recall mean, median, mode and range.	- use stem-and-leaf plots to compare two like sets of data such as the heights of girls and the heights of boys in a class - describe the shape of the distribution of data using terms such as 'positive skew', 'negative skew' 'symmetric' and 'bi-modal'.	- understand that box plots are an efficient and common way of representing and summarising data and can facilitate comparisons between data sets - use parallel box plots to compare data about the age distribution of Aboriginal and Torres Strait Islander people with that of the Australian population as a whole.	Where appropriate use a straight line to describe the relationship allowing for variation: - investigate different techniques for finding a 'line of best fit', such as 'by inspection' or using linear regression, (use technology) - explore interpolation and extrapolation and the trend of being reliable or not reliable.
	Calculate mean, median, mode and range for sets of data. Interpret these statistics in the context of data: - recognise that summarising data by calculating measures of centre and spread can help make sense of the data.	Explore the variation of means and proportions of random samples drawn from the same population: - use sample properties to predict characteristics of the population.	Compare data displays using mean, median and range to describe and interpret numerical data sets in terms of location (centre) and spread: - compare means, medians and ranges of two sets of numerical data which have been displayed using histograms, dot plots, or stem and leaf plots - explore the appropriate measure of central tendency to draw conclusions - explore measures of spread such as range, interquartile range to accurately describe a data set and draw conclusions.	Compare shapes of box plots to corresponding histograms and dot plots and discuss the distribution of data: - investigate data in different ways to make comparisons and draw conclusions.	
	Describe and interpret data displays using median, mean and range: - use mean and median to compare data sets and explain how outliers may affect the comparison - locate mean, median and range on graphs and connect them to real life.	Investigate the effect of individual data values, including outliers, on the mean and median: - use displays of data to explore and investigate effects.		Use scatter plots to investigate and comment on relationships between two numerical variables: - use authentic data to construct scatter plots, make comparisons and draw conclusions - explore the measures of centre, mean, median, range and interquartile range between two numerical variables and draw conclusions.	
				Investigate and describe bivariate numerical data where the independent variable is time: - investigate biodiversity changes in Australia since European occupation - construct and interpreting data displays that represent bivariate data over time.	
				Evaluate statistical reports in the media and other places by linking claims to displays, statistics and representative data: - investigate the use of statistics in reports regarding the growth of Australia's trade with other countries of the Asia region - evaluate statistical reports comparing the life expectancy of Aboriginal and Torres Strait Islander people with that of the Australian population as a whole.	

