Year 7 to 10 Mathematics

September 2022

Scope and sequence

Revised to align with the Australian Curriculum V9.0 (2022)

V2.0

Mathematics: Year 7 to 10

Contents

Mathematics: Year 7 to 10 1
Context statement 2
Achievement standards 3
Strand: Number. 3
Scope and sequence 4
Strand: Number 4
Achievement standards 15
Strand: Algebra 15
Scope and sequence16
Strand: Algebra 16
Achievement standards 27
Strand: Measurement 27
Scope and sequence 28
Strand: Measurement 28
Achievement standards 37
Strand: Space 37
Scope and sequence 38
Strand: Space 38
Achievement standards 43
Strand: Statistics 43
Scope and sequence 44
Strand: Statistics 44
Achievement standards 49
Strand: Probability 49
Scope and sequence 50
Strand: Probability 50

Context statement

The Mathematics curriculum is organised around the interaction of three content strands and four proficiency strands. The content strands are number and algebra, measurement and geometry, and statistics and probability.

The Mathematics curriculum is taught through the proficiency strands of understanding, fluency, problem-solving and reasoning. They indicate the breadth of mathematical actions that teachers can emphasise. They describe how content is explored or developed.

Mathematics aims to instil in students an appreciation of the elegance and power of mathematical reasoning. Students are reasoning mathematically when they explain their thinking, when they deduce and justify strategies used and when they compare and contrast ideas and explain their choices
Links between the various components of mathematics are made clear and taught as interconnected skills.
Students need to be supported to build a robust knowledge of adaptable and transferable mathematical concepts. They need to make connections between related concepts and become confident, creative users and communicators of mathematics.

The South Australian Mathematics Scope and Sequence R to 10:

- provides the achievement standards positioned with related strands; number and algebra, measurement and geometry, statistics and probability
- makes the relationship between achievement standards and content explicit through listing the achievement standards alongside the relevant content descriptors
- emphasises the progression of skills by highlighting the verbs to emphasise the development of skills across the curriculum
- supports clarity by breaking achievement standards into dot points
- provides the sequence of content and sequence of achievement
- includes content descriptors listed with their associated elaborations.

Achievement standards

Strand: Number

The Number strand develops ways of working with mental constructs that deal with correspondence, magnitude and order, for which operations and their properties can be defined. Numbers have wide ranging application and specific uses in counting, measuring and other means of quantifying situations and objects. Number systems are constructed to deal with different contexts and problems involving finite and infinite, discrete and continuous sets. Developing number sense and the ability to work effectively with numbers is critical to being an active and productive citizen who is successful at work and in future learning, who is financially literate, and who engages with the world and other individuals.

Year 7	Year 8	Year 9	Year 10 and Year 10A Mathematics Pathways
Skills By the end of Year 7, students: - represent natural numbers in expanded form and as products of prime factors, using exponent notation - solve problems involving - squares of numbers and - square roots of perfect square numbers - solve problems involving addition and subtraction of integers - use all 4 operations in calculations involving positive fractions and decimals - choose efficient calculation strategies - choose between equivalent representations of rational numbers and percentages to assist in calculations - use mathematical modelling to solve practical problems involving - rational numbers - percentages - ratios in financial - other applied contexts justifying choices of representation.	Skills By the end of Year 8, students: - recognise irrational numbers and terminating or recurring decimals - apply the exponent laws to calculations with numbers involving positive integer exponents - solve problems involving the 4 operations with integers and positive rational numbers - use mathematical modelling to solve practical problems involving - ratios - percentages - rates in measurement and financial contexts.	Skills By the end of Year 9, students: - recognise and use rational and irrational numbers to solve problems - extend and apply the exponent laws with positive integers to variables.	Skills By the end of Year 10, students: - recognise the effect of approximations of real numbers in repeated calculations.

Scope and sequence

Strand: Number

Year 7
Describe the relationship between perfect square numbers and square roots, and use squares of numbers square roots of perfect square num to solve problems - investigate squares of natural nu from 1 to 20, and connect them visual representations such as do arranged in a square pattern - use the square and square root notation, and the distributive prop and area diagrams to calculate th squares of two-digit numbers; for example, $\begin{aligned} 43^{2} & =(40+3)^{2} \\ & =40^{2}+2 \times 40 \times 3+3^{2} \\ & =1600+240+9 \\ & =1849 \end{aligned}$

- determine between which 2 consecutive natural numbers the square root of a given number lies; for example,

43 is between the square numbers 36 and 49 so $\sqrt{43}$ is between $\sqrt{36}$ and $\sqrt{49}$ and therefore between 6 and 7

- generate a list of perfect square numbers and describe any emerging patterns;
for example,
the last digit of perfect square numbers, or the difference between consecutive square numbers, and recognising the constant second difference
- use the relationship between perfect square numbers and their square roots

Year 8
Recognise irrational numbers in applied

Recognise irrational numbers in applied contexts, including square roots and π

- recognise that the real number system includes irrational numbers which can be approximately located on the real number line;
for example,
the value of π lies somewhere between 3.141 and 3.142 that is,
$3.141<\pi<3.142$
- explore the decimal representation of π as an irrational number that is neither terminating nor recurring
- use digital tools to systematically explore contexts or situations that use irrational numbers, such as
- finding the length of the hypotenuse in a right-angled triangle with the other 2 sides having lengths of one metre or 2 metres and one metre; or
- given the area of a square, finding the length of the side where the result is irrational; or
- finding ratios involved with the side lengths of paper sizes A0, A1, A2, A3 and A4
- investigate the golden ratio in art and design, and historical approximations to π in different societies

Rec	
incl	
irra	
inv	

Recognise that the real number system includes the rational numbers and the irrational numbers, and solve problems involving real numbers using digital tools

- investigate the real number system by representing the relationships between irrationals, rationals, integers and natural numbers and discussing the difference between exact representations and approximate decimal representations of irrational numbers
- use a real number line to indicate the solution interval for inequalities of the form $a x+b<c$;
for example,

$$
2 x+7<0
$$

or of the form $a x+b>c$;
for example,

$$
1.2 x-5.4>10.8
$$

- use positive and negative rational numbers to solve problems;
for example,
for financial planning such as budgeting
- solve problems involving the substitution of real numbers into formulas, understanding that solutions can be represented in exact form or as a decimal approximation, such as calculating the area of a circle using the formula $A=\pi r^{2}$ and specifying the answer in terms of π as an exact real number;
for example,
Year 10

Recognise the effect of using

 approximations of real numbers in repeated calculations and compare the results when using exact representations- compare and contrast the effect of truncation or rounding on the final result of calculations when using approximations of real numbers rather than exact representations
- investigate the impact of approximation on multiple calculations in contexts that involve the area of compound shapes involving circles, the surface area and volume of compound objects, and repeated calculations of simple interest where the solutions are not exact cents

Year 10A Mathematics Pathways

Operations on numbers involving ractional exponents and surds

- explain that $\sqrt{a}=a^{\frac{1}{2}}=a^{0.5}$ for $a \geq 0$, generalizing to $\sqrt[n]{a}=a^{\frac{1}{n}}$, and evaluating corresponding expressions; for example,
- $\sqrt{10}=10^{0.5} \approx 3.162$,
- $2^{5}=32$ so
$32^{\frac{1}{5}}=\sqrt[5]{32}=2$
- explain that $a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{a})^{m}=$ $\sqrt[n]{a^{m}}=\left(a^{m}\right)^{\frac{1}{n}}$
and evaluate corresponding
expressions;
for example,
$8^{\frac{2}{3}}=(\sqrt[3]{8})^{2}=2^{2}=4$ and
$8^{\frac{2}{3}}=\sqrt[3]{8^{2}}=\sqrt[3]{64}=4$
- use the y^{x} and $\sqrt[x]{y}=y^{\frac{1}{x}}$ functions of technology to evaluate expressions involving decimal exponents and surds approximately,
for example,
- $10^{3.47} \approx 2951.21$
- $\sqrt[3]{78} \approx 4.273$
- $200^{0.7} \approx 40.8057$
- show that
$\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}$ and
$\sqrt{a-b} \neq \sqrt{a}-\sqrt{b}$
for $a, b>0$,

Strand: Number

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
to determine the perimeter of a square tiled floor using square tiles; for example, an area of floor with 144 square tiles has a perimeter of 48 tile lengths		the circumference of a circle with diameter 5 units is 5π units, and the exact area is $\pi\left(\frac{5}{2}\right)^{2}=\frac{25}{4} \pi$ square units which rounds to 19.63 square units, correct to 2 decimal places - investigate the position of rational and irrational numbers on the real number line, using geometric constructions to locate rational numbers and square roots on a number line; for example, $\sqrt{2}$ is located at the intersection of an arc and the number line, where the radius of the arc is the length of the diagonal of a one-unit square		for example, $\begin{aligned} & \sqrt{16+9}=\sqrt{25}=5 \text { but } \\ & \sqrt{16}+\sqrt{9}=4+3=7 \text { and } \\ & \sqrt{16-9}=\sqrt{7} \approx 2.646, \text { but } \\ & \quad \sqrt{16}-\sqrt{9}=4-3=1 \end{aligned}$ - calculate with products and quotients of square roots, including simplifying square roots of natural numbers that have perfect square factors, for example, $\begin{aligned} \sqrt{96} & =\sqrt{16 \times 6} \\ & =\sqrt{16} \times \sqrt{6} \\ & =4 \sqrt{6} \end{aligned}$ and rationalizing expressions involving square roots, for example, $\begin{aligned} \sqrt{\frac{13}{5}} & =\frac{\sqrt{13}}{\sqrt{5}} \\ & =\frac{\sqrt{13}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \\ & =\frac{\sqrt{13} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} \\ & =\frac{\sqrt{65}}{5} \end{aligned}$ - perform the four arithmetic operations with surds of the form $a+b \sqrt{n}$ where n is a natural number, including rationalising the denominator of a quotient, for example, $\begin{gathered} \frac{(3+\sqrt{7})}{(3-\sqrt{7})}=\frac{(3+\sqrt{7})}{(3-\sqrt{7})} \times \frac{(3+\sqrt{7})}{(3+\sqrt{7})} \\ =\frac{16+6 \sqrt{7}}{2} \\ =8+3 \sqrt{7} \end{gathered}$

Strand: Number

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Represent natural numbers as products of powers of prime numbers using exponent notation - apply knowledge of factors to strategies for expressing natural numbers as products of powers of prime factors, such as - repeated division by prime factors or - creating factor trees for example, $\begin{aligned} 48 & =6 \times 8 \\ & =2 \times 3 \times 2 \times 2 \times 2 \\ & =3^{1} \times 2^{4} \\ & =3 \times 2^{4} \end{aligned}$ - develop familiarity with - the sequence $1,2,4,8,16,32,64$, $128,256,512$ and powers of 2 - the sequence $1,3,9,27,81,243$, 729 and powers of 3 and - the sequence $1,5,25,125,625$ and powers of 5 - solve problems involving lowest common multiples and greatest common divisors (highest common factors) for pairs of natural numbers by comparing their prime factorisation	Establish and apply the exponent laws with positive integer exponents and the zero-exponent, using exponent notation with numbers - recognise the connection between exponent form and expanded form with the exponent laws of - product of powers rule - quotient of powers rule - power of a power rule - removing brackets - expressing in simplest form for example, $2^{3} \times 2^{2}$ can be represented as $(2 \times 2 \times 2) \times(2 \times 2)=2^{5}$ and connecting the result to the addition of exponents - apply the exponent laws of the - product of powers rule - quotient of powers rule - power of a power rule and - zero exponent individually and in combination;			

Strand: Number

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Represent natural numbers in expanded notation using place value and powers of 10 - investigate exponent notation for powers of 10 such as "one hundred thousand" is $\begin{aligned} & 100000 \\ & =10 \times 10 \times 10 \times 10 \times 10 \\ & =10^{5} \end{aligned}$ - relate the sequences $10,100,1000$, $10000 \ldots$ and $10^{1}, 10^{2}, 10^{3}, 10^{4} \ldots$ - apply and explain the connections between place value and expanded notations; for example, $\begin{aligned} & 7000=7 \times 10^{3} \text { and } \\ & 3750=3 \times 10^{3}+7 \times 10^{2}+5 \times 10^{1} \end{aligned}$	for example, use exponents to determine the effect on the volume of a 2 centimetre cube when the cube is enlarged to a 6 centimetre cube, $\frac{6^{3}}{2^{3}}$ $=\frac{2^{3} \times 3^{3}}{2^{3}}$ $=3^{3}$, so the volume is increased by a factor of 27 - use digital tools to systematically explore the application of the exponent laws; observing that the bases need to be the same - investigate and establish the zero index law. Use examples such as $\frac{3^{4}}{3^{4}}=1$, and $3^{4-4}=3^{0}$ to illustrate the convention that for any non-zero natural number $n, n^{0}=1$			

Strand: Number

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Find equivalent representations of rational numbers and represent rational numbers on a number line				
- investigate equivalence of fractions using common multiples and a fraction wall, diagrams or a number line to show that a fraction such as $\frac{2}{3}$ is equivalent to $\frac{4}{6}$ and $\frac{6}{9}$ and therefore $\frac{3}{3}<\frac{5}{6}$				
- express a fraction in simplest form using common divisors				
- apply and explain the equivalence between fraction, decimal and percentage representations of rational numbers;				
for example, $16 \%, 0.16, \frac{16}{100}$ and $\frac{4}{25}$ using manipulatives, number lines or diagrams				
- represent positive and negative fractions and mixed numerals on various intervals of the real number line, including intervals that are not symmetrical about zero				

Strand: Number

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Round decimals to a given accuracy appropriate to the context and use appropriate rounding and estimation to check the reasonableness of solutions - identify the interval between a pair of consecutive integers that includes a given rational number - choose and apply conventions for rounding correct to a specified number of decimal places based upon the context - check that the accuracy of rounding is suitable for context and purpose, such as the amount of paint required and cost estimate for renovating a house; for example, - purchasing 2 litres of paint to paint the bedroom even though 1.89 litres is the exact answer or - estimating a renovation budget to the nearest $\$ 100$	Recognise terminating and recurring decimals, using digital tools as appropriate - identify when a fraction has a terminating decimal expansion from the prime factorisation of its denominator; for example, $\frac{7}{24}=0.2916 \text { does not have a }$ terminating decimal expansion, while $\frac{7}{25}=0.28 \text { does }$ - identify terminating, recurring and nonterminating decimals and choosing their appropriate representations such as $\frac{1}{3}$ is represented as $0 . \overline{3}$			
Use the four operations with positive rational numbers including fractions, decimals and percentages using efficient calculation strategies - solve addition and subtraction problems involving fractions and decimals; for example, using rectangular arrays with dimensions equal to the denominators, algebra tiles, digital tools or informal jottings - choose an appropriate numerical representation for a problem so that	Use the four operations with integers and with rational numbers, choosing and using efficient strategies and digital tools where appropriate - recognise rational numbers are the set of all numbers that can be expressed as fractions - use patterns to assist in establishing the rules for the multiplication and division of integers - recall, apply and explain efficient strategies such as using			

Strand: Number

Year 7
efficient computations can be made,
such as 12.5\%, $\frac{1}{8}$ 0.125 or $\frac{125}{100}$

Year 8

| Year 9 | Year 10 | |
| :--- | :--- | :--- | :--- |

develop efficient strategies with appropriate use of the

- commutative and associative properties
- place value
- patterning
- multiplication facts
to solve multiplication and division problems involving fractions and decimals;
for example,
using the commutative property to calculate $\frac{2}{3}$ of $\frac{1}{2}$ giving $\frac{1}{2}$ of $\frac{2}{3}=\frac{1}{3}$
- solve multiplicative problems involving fractions and decimals using fraction walls, rectangular arrays, algebra tiles, calculators or informal jottings
- develop efficient strategies with appropriate use of the commutative and associative properties, regrouping or partitioning to solve additive problems involving fractions and decimals
- calculate solutions to solve problems using the representation that makes computations efficient such as
- 12.5% of 96 is more efficiently calculated as $\frac{1}{8}$ of 96 ,
- including contexts such as comparing land-use by calculating the total local municipal area set aside for parkland or
- the commutative or associative property for regrouping
- partitioning
- place value
- patterning
- multiplication or division facts
to solve problems involving positive and negative integers, fractions and decimals
- recognise the effect of sign in the multiplication of integers;
for example,
$\left({ }^{-} 1\right)^{4}=1$ and $\left({ }^{-} 1\right)^{5}={ }^{-} 1$

Strand: Number

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
- manufacturing and retail, the amount of protein in daily food intake across several days, or - increases/decreases in energy accounts each account cycle				
Compare, order and solve problems involving addition and subtraction of integers - use less-than and greater-than notation in expressions when comparing and ordering integers; for example, - negative 5 is less than positive 2 and can be represented as $(-5)<(+2)$ - negative 3 is greater than negative 6 and can be represented as $(-3)>(-6)$ - discuss language such as "addition", "subtraction", "magnitude", "difference", "sign" and synonyms of these terms - order, add and subtract integers using a number line				

Strand: Number

Strand: Number

| Year 7 | Year 8 | Year 9 | Year 10 |
| :---: | :---: | :---: | :---: | :---: |

Use mathematical modelling to solve practical problems involving rational numbers and percentages, including

 financial contextsformulate problems, choosing representations and efficient calculation strategies, use digital tools as appropriate;
interpret and communicate solutions in terms of the situation, justifying choices made about the representation

- model additive situations involving positive and negative quantities;
for example,
- a lift travelling up and down floors in a high-rise apartment where the ground floor is interpreted as zero;
- in geography when determining altitude above and below sea level
- recall solving problems that require finding a familiar fraction, decimal or percentage of a quantity, include percentage discounts, choose efficient calculation strategies and use digital tools where appropriate
- model contexts involving proportion, such as
- the proportion of students attending the school disco
- proportion of bottle cost to recycling refund

Use mathematical modelling to solve practical problems involving rational numbers and percentages, include financial contexts;
formulate problems, choosing efficient calculation strategies and use digital tools where appropriate;
interpret and communicate solutions in terms of the situation, reviewing the appropriateness of the model

- model situations involving weather and environmental contexts including temperature or sea depths by applying operations to positive and negative rational numbers;
for example,
involving average temperature increases and decreases
- recall knowledge of integers when modelling financial problems involving profit and loss, credits and debits, gains and losses
- model situations that involve percentage increases or decreases and explain why it is an increase or
decrease, such as
- mark-ups
- discounts
- Goods and Services Tax
- changes in populations
- recycling rate

Strand: Number

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
- proportion of school site that is green space - 55\% of Year 7 students attended the end of term function - 23% of the school population voted yes to a change of school uniform; interpreting and communicating answers in terms of the context of the situation - model financial problems involving - profit and loss - credits and debits - gains and losses; for example, holding a fundraising sausage sizzle and determining whether the event made a percentage profit or loss	- model situations involving personal income tax, interpreting tax tables to determine income tax at various levels of income, including overall percentage of income allocated to tax - model situations involving percentage increase or decrease such as - market trends - effects on population - effects on the environment over extended time periods			

Achievement standards

Strand: Algebra

The Algebra strand develops ways of using symbols and symbolic representations to think and reason about relationships in both mathematical and real-world contexts. It provides a means for manipulating mathematical objects, recognising patterns and structures, making connections, understanding properties of operations and the concept of equivalence, abstracting information, working with variables, solving equations and generalising number and operation facts and relationships. Algebra connects symbolic, graphic and numeric representations. It deals with situations of generality, communicating abstract ideas applied in areas such as science, health, finance, sports, engineering, and building and construction.

Year 7
Skills
By the end of Year 7, students:
- use algebraic expressions to represent situations

- describe the relationships between variables from authentic data
- substitute values into formulas to determine unknown values
- solve linear equations with natural number solutions
- create tables of values related to algebraic expressions and formulas
- describe the effect of variation.

	Year 8	
Skills		

By the end of Year 8, students:

- apply algebraic properties to rearrange, expand and factorise linear expressions
- graph linear relations and solve linear equations with rational solutions and one-variable inequalities, graphically and algebraically
- use mathematical modelling to solve problems using linear relations, interpreting and reviewing the model in context
- make and test conjectures involving linear relations using digital tools

Skills

By the end of Year 9, students:

- extend and apply the exponent laws with positive integers to variables
- expand binomial products, and factorise monic quadratic expressions
- find the
- distance between 2 points on the Cartesian plane - gradient and midpoint of a line segment
- use mathematical modelling to solve problems involving change in financial and other applied contexts, choosing to use linear and quadratic functions
- graph quadratic functions and
- solve monic quadratic equations with integer roots algebraically
- describe the effects of variation of parameters on functions and relations, using digital tools, and make connections between their graphical and algebraic representations.

Year 10 and Year 10A Mathematics Pathways

Skills

By the end of Year 10, students:

- use mathematical modelling to solve problems involving growth and decay in financial and other applied situations, applying linear, quadratic and exponential functions as appropriate, and solve related equations, numerically and graphically
- make and test conjectures involving functions and relations using digital tools
- solve problems involving simultaneous linear equations and linear inequalities in 2 variables graphically and justify solutions.

Scope and sequence

Strand: Algebra

Year 7

Recognise and use variables to represent everyday formulas algebraically and substitute values into formulas to determine an unknown

- link variables to attributes and measures being modelled when using formulas, such as
- the area of a rectangle is equal to the length x width as $A=l \times w$ when finding the width of a rectangle with given area and length
- using $p=6 g+b$ to describe a total of points expressed as goals (worth 6 points) and behinds (worth one point)
- interpret and use formulas obtained from other sources;
for example,
maximum heart rates and target heart rates for moderate exercise
- substitute numerical values for variables when using formulas and calculate the value of an unknown in practical situations;
for example,
- calculate weekly wage W given base wage b and overtime hours h at 1.5 times rate $r, W=b+1.5 \times h \times r$,
- use values for mass m and volume v to determine density d of a substance where $d=\frac{m}{v}$
Year 8

Year 9

Year 10

Year 10A Mathematics Pathways

Apply the exponent laws to numerical expressions with integer exponents and extend to variables

- recall the index laws with variables
- multiplying
- dividing
- raising a power to a power
- power of a product
- power of a quotient
- power of zero
- investigate the negative index law with numbers
- connect with the meaning of reciprocals
- apply negative index law with variables
- represent decimals in exponential form; for example,
0.475 can be represented as $0.475=$
$\frac{4}{10}+\frac{7}{100}+\frac{5}{1000}$
$=4 \times 10^{-1}+7 \times 10^{-2}+5 \times 10^{-3}$
and 0.00023 as 23×10^{-5}
- simplify and evaluate numerical expressions, involving both positive and negative integer exponents, explaining why;
for example,
5^{-3}
$=\frac{1}{5^{3}}$
$=\left(\frac{1}{5}\right)^{3}$
$=\frac{1}{125}$

Expand, factorise and simplify expressions and solve equations algebraically, applying exponent laws involving products, quotients and powers of variables, and the distributive property

- recall the process of factorisation,
product of factors and highest common factor
- explain the relationship between factorisation and expansion, including
- common factors
- the difference of two squares
- perfect squares
- sum and product
- trial and error
- four terms by grouping in pairs
- the completed square form
for quadratic expressions
- apply knowledge of exponent laws to algebraic terms and use both positive and negative integral exponents to simplify algebraic expressions and solve equations algebraically

Simplification of combinations of linear expressions with rational coefficients and the solution of related equations

- simplify sums and differences of linear expressions of the form $\frac{a x+b}{c}$
where a and b are integers, and c is a non-zero integer,
for example,
$\frac{6 x-11}{2}-\frac{7 x}{4}+\frac{9-5 x}{3}=\frac{-5 x-30}{12}$
- solve equations involving sums and differences of linear expressions with rational coefficients,
for example
$\frac{-2 x}{3}+\frac{4}{9}=\frac{11}{5}(7 x-1)$
$\Rightarrow-30 x+20=693 x-99$
$\Rightarrow x=\frac{119}{723}$,
and verifying the solution

Strand: Algebra

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
		and connecting terms of the sequence $125,25,5,1, \frac{1}{5}, \frac{1}{25}, \frac{1}{125} \ldots$ to terms of the sequence $5^{3}, 5^{2}, 5^{1}, 5^{0}, 5^{-1}, 5^{-2}, 5^{-3} \ldots$ - relate the computation of numerical expressions involving exponents to the exponent laws and the definition of an exponent; for example, $\begin{aligned} & 2^{3} \div 2^{5} \\ &= 2^{-2} \\ &= \frac{1}{2^{2}} \\ &= \frac{1}{4} \\ &(3 \times 5)^{2} \\ &=3^{2} \times 5^{2} \\ &=9 \times 25 \\ &= 225 \end{aligned}$ - recognise exponents in algebraic expressions and corresponding conventions; for example, - for any non-zero natural number a, $a^{0}=1$ - $x^{1}=x$ - $r^{2}=r \times r$ - $h^{3}=h \times h \times h$ - $y^{4}=y \times y \times y \times y$, and - $\frac{1}{w} \times \frac{1}{w}$ $=\frac{1}{w^{2}}$ $=w^{-2}$		Investigate the concept of a polynomial and apply the factor and remainder theorems to solve problems - explore the polynomials and name each polynomial - describe terms of a polynomial - explore function notation - expand and simplify polynomials - explore division of polynomials and establish terms, dividend, divisor, quotient and remainder - investigate the relationship between algebraic long division and the factor and remainder theorems - explore solving polynomial equations, graphing polynomial equations and applications Apply understanding of polynomials to sketch a range of curves and describe the features of these curves from their equation - investigate the features of graphs of polynomials such as cubics and quartics using technology to include: - shape and the effect of leading coefficient - axes intercepts - the effect of repeated factors - apply the Null Factor Law and Remainder theorem to sketch the graph - apply this to higher degree polynomials - explore application problems

Strand: Algebra

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
		- apply the exponent laws to simplify expressions involving products, quotients, and powers of constants and variables; for example, $\begin{aligned} & \frac{(2 x y)^{3}}{x y^{4}} \\ & =\frac{8 x^{3} y^{3}}{x y^{4}} \\ & =8 x^{2} y^{-1} \end{aligned}$		

Strand: Algebra

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
		- relate the prefixes for SI units from pico- (trillionth) to tera- (trillion) to the corresponding powers of 10 ; for example, one pico-gram $=10^{-12}$ grams and one terabyte $=10^{12}$ bytes		
Formulate algebraic expressions using constants, variables, operations and brackets - establish key words - variable - numeral - expression - equation - terms - like terms - coefficient - constant term - generalise arithmetic expressions to algebraic expressions involving constants, variables, operations and brackets; for example, $\circ 7+7+7=3 \times 7$ - $x+x+x=3 \times x$ noting that $3 x$ includes implied multiplication and recognising the difference between $3 x+4$ and $3(x+4)$ - formulate algebraic expressions that represent mathematical relationships; for example, translating from words to symbols, "think of a number" type of activities	Create, expand, factorise, rearrange and simplify linear expressions, applying the associative, commutative, identity, distributive and inverse properties - rearrange and simplify linear expressions involving variables with integer coefficients and constants; use manipulatives such as algebra tiles to support calculations; for example, using manipulatives to demonstrate that $\begin{aligned} & \circ 2 x+4=2(x+2) \\ & \circ 3(a-b)=3 a-3 b \\ & \circ 5(m+2 n)+3 m-4 n \\ & \quad=5 m+10 n+3 m-4 n \\ & =8 m+6 n \end{aligned}$ - demonstrate the relationship between factorising and expanding linear expressions using manipulatives, such as algebra tiles or area models, and describe with mathematical language - use the distributive, associative, commutative, identity and inverse properties to expand and factorise algebraic expressions using strategies such as the area model	Simplify algebraic expressions, expand binomial products and factorise monic quadratic expressions - expand combinations of binomials such as $\begin{aligned} & \circ(x+7)(x+8), \\ & \circ(x+7)(x-8), \\ & \circ(x-7)(x+8), \\ & \circ(x-7)(x-8) \end{aligned}$ to identify expansion and factorisation patterns related to $(x+a)(x+b)$ $=x^{2}+(a+b) x+a b$, where a and b are integers - use manipulatives such as algebra tiles or area models to expand or factorise algebraic expressions with readily identifiable binomial factors; for example, $\begin{aligned} & \text { - }(x+1)(x+3)=x^{2}+4 x+3, \\ & \circ \\ & (x-5)^{2}=x^{2}-10 x+25 \text { or } \\ & (x-3)^{2}+4 \\ & \quad=x^{2}-6 x+9+4 \\ & \quad=x^{2}-6 x+13 \end{aligned}$ - recognise the relationship between expansion and factorisation, and use digital tools to systematically explore the factorisation of $x^{2}+m x+n$ where m and n are integers		Algebraic representations of quadratic functions of the form $f(x)=a x^{2}+b x+c$ where a, b and c are non-zero integers, and their transformation to the form $f(x)=a(x+h)^{2}+k$ where h and k are non-zero rational numbers, and the solution of related equations - connect the expanded and transformed representations of a quadratic function by completing the square, for example, $\begin{aligned} & x^{2}+3 x+1=\left(x+\frac{3}{2}\right)^{2}-\frac{5}{4} \text { and } \\ & 2 x^{2}+8 x-5=2(x+2)^{2}-13 \end{aligned}$ - derive the quadratic formula and apply it to solve quadratic equations, using the discriminant to identify the number and nature of the roots of a quadratic equation, and verify solutions - identify what can be known about the graph of a quadratic function by considering its coefficients, the discriminant and symmetry to assist sketching by hand - recognise conjugate pairs of irrational roots of a quadratic equation and their location with respect to the axis of symmetry of the graph of the corresponding function

Strand: Algebra

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
		- consider - product expansion - the difference of two squares - perfect squares - binomial expansion - $(a+b)(c+d+e)$		
Solve one-variable linear equations with natural number solutions; verify the solution by substitution - recognise that solving an equation is a process of determining a value that makes the equation true - use substitution to determine whether a given number is a solution to an equation or not - solve equations using concrete materials, the balance model, and backtracking, explaining the process - solve linear equations such as $3 x+7=$ 19 algebraically, and verify the solution by substitution - perform negative substitutions and calculate the result	Graph linear relations on the Cartesian plane using digital tools where appropriate; solve linear equations and one-variable inequalities using graphical and algebraic techniques; verify solutions by substitution - recognise that in a table of values, if the first difference between consecutive values of the dependent variable is constant, then it is a linear relation - graph linear functions and relations of the form $\begin{aligned} & \circ x=a \\ & \circ y=a \\ & \circ x \leq a \\ & \circ x>a \\ & \circ y \leq a \\ & \circ y>a \end{aligned}$ on the Cartesian plane for known values of a - complete a table of values, plot the resulting points on the Cartesian plane and determine whether the relationship is linear - graph the linear relationship	Find the gradient of a line segment, the midpoint of the line interval and the distance between 2 distinct points on the Cartesian plane - recognise that the gradient of a line is calculated using the gradient of a line segment on that line and is independent of which 2 distinct points on the line are used for this calculation - use digital tools and transformations to illustrate that - parallel lines in the Cartesian plane have the same gradient - the relationship between the gradients of pairs of perpendicular lines is that their product is (-1) - use Pythagoras' theorem to establish the distance between 2 points in the Cartesian plane and apply this using horizontal and vertical distances and coordinates - investigate graphical and algebraic techniques for finding the midpoint and gradient of the line segment between 2 points - use dynamic graphing software and superimposed images; for example, - playground equipment	Solve linear inequalities and simultaneous linear equations in 2 variables; interpret solutions graphically and communicate solutions in terms of the situation - investigate - solution by graphing - solution by substitution - solution by elimination using technology - describe the form of simultaneous equations and determine whether it is appropriate to solve by substitution or elimination - investigate situations involving linear equations in context, such as - multiple quotes for a job - profit and loss - solve the equations graphically, giving solutions in everyday language, such as - "break-even point" or - "point to change providers" for the job - describe the solution of simultaneous equations within the context of the situation	Solve simultaneous equations using systematic guess-check-and-refine with digital technology - recall solution by graphing, substitution and elimination - use technology to solve simultaneous equations - apply this to problem solving with simultaneous equations and check your solution

Strand: Algebra

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
	$a x+b=c$ for known values of a, b and c and identify from the graph where $a x+b<c \text { or where } a x+b>c$ - solve linear equations of the form $a x+b=c$ and one-variable inequalities of the form - $a x+b<c$ or - $a x+b>c$ where $a>0$ using inverse operations and digital tools, and check solutions by substitution - solve linear equations such as $3 x+7=6 x-9$ represent these graphically, and verify solutions by substitution	- ramps - escalators to investigate gradients in context and their relationship to rule of a linear function, and interpret gradient as a constant rate of change in linear modelling contexts	- recall inequalities and number line representation - investigate the four operations with inequalities and establish rules - graph regions corresponding to inequalities in the Cartesian plane; for example, graphing $2 x+3 y<24$ and verifying using a test point such as (0,0) - identify all the combinations of trips to the movies, each costing $\$ 12$, and ice-skating sessions, each costing \$21, as the integer solutions for an entertainment budget of up to $\$ 150$ for the school holidays; expressing algebraically as $12 m+21 s \leq 150$ - test when a circle of a specified radius has a corresponding area greater than a given value, or whether a point satisfies an inequality; for example, whether the point $(3,5)$ satisfies $2 y<x^{2}$	
Generate tables of values from visually growing patterns or the rule of a function; describe and plot these relationships on the Cartesian plane - plot points from a table of values generated using simple linear functions and recognise patterns, such as points that lie on a straight line - discuss and use variables to create a general rule and use the rule to determine the value of the dependent variable for any given value of the independent variable;		Identify and graph quadratic functions, solve quadratic equations graphically and numerically, and solve monic quadratic equations with integer roots algebraically, using graphing software and digital tools as appropriate - recognise that in a table of values, if the second difference between consecutive values of the dependent variable is constant, then it is a quadratic - graph quadratic functions using digital tools and compare what is the same and what is different between	Recognise the connection between algebraic and graphical representations of exponential relations and solve related exponential equations, using digital tools where appropriate - recognise that in a table of values, if the ratio between consecutive values of the dependent variable is constant, then it is an exponential relation - investigate the links between algebraic and graphical representations of exponential functions using graphing software	The graphs of $y=\sin (x)$ and $y=\cos (x)$ as functions of a real variable and the solution of related equations - explore the use of the unit circle and animations to show the periodic, symmetric, and complementary nature of the sine and cosine functions - graph the sine and cosine functions over different domains of a real variable, including negative values - establish relationships between Pythagoras' theorem, the unit circle, trigonometric ratios, and angles in half-

Strand: Algebra

Year 7
for example,
plotting the value of the circumference
of a circle for varying values of radius

- use function machines to generate a table of ordered pairs using input and output values, plot the relationships on a Cartesian plane and describe the graph in terms of shape
- use diagrams and manipulatives to form linear growth patterns, representing these patterns in tables and describe the relationship in terms of the way the pattern is growing and in the context of the situation

Year 8	

Year 9
Year 10

Year 10A Mathematics Pathways
these different functions and their
respective graphs;
interpret features of the graphs such as

- symmetry
- turning point
- maximum and minimum values
- determining when values of the quadratic function lie within a given range
- solve quadratic equations algebraically and compare these to graphical solutions
- use graphs to determine the solutions of quadratic equations; recognise that the roots of a quadratic function correspond to the x-intercepts of its graph and that if the graph has no x intercepts, then the corresponding equation has no real solutions
- relate horizontal axis intercepts of the graph of a quadratic function to the factorised form of its rule using the null factor law;
for example,
the graph of the function
$y=x^{2}-5 x+6$ can be represented as
$y=(x-2)(x-3)$ with x-axis
intercepts where either
$(x-2)=0$ or $(x-3)=0$
- recognise that the equation
$x^{2}=a$, where $a>0$, has 2 solutions,
$x=\sqrt{a}$ and $x=-\sqrt{a}$;
for example,
- if $x^{2}=39$ then
$x=\sqrt{39}$
- use digital tools with symbolic manipulation functionality to systematically explore exponentia relations
square triangles and equilatera triangles
- approximate values of the sine and cosine functions from a suitably scaled diagram of the unit circle, and solve equations of the form $\sin (x)=\frac{1}{\sqrt{2}}$ and $\cos (x)=-0.73$ over a specified interval graphically

Solve simple exponential equations - describe exponential equations

- solve exponential equations by equating indices when both sides have the same base
- use technology to solve exponential equations if possible
- investigate exponential equations derived from authentic mathematica models based on population growth
- solve exponential equations using logarithm rules and applications

Strand: Algebra

\begin{tabular}{|c|c|c|c|c|}
\hline Year 7 \& Year 8 \& Year 9 \& Year 10 \& Year 10A Mathematics Pathways

\hline \& \& \begin{tabular}{l}
$x=6.245$ correct to 3 decimal places

$$
\begin{aligned}
& x=-\sqrt{39} \\
& x=-6.245 \text { correct to } 3 \text { decimal } \\
& \text { places }
\end{aligned}
$$

and representing these graphically
\end{tabular} \& \&

\hline | Describe relationships between variables represented in graphs of functions from authentic data |
| :--- |
| - use graphs to analyse |
| - a building's electricity or gas usage over a period of time |
| - the value of shares on a stock market |
| - the temperature during a day interpreting and discussing the relationships they represent |
| - explore properties of line graphs, such as |
| - dependent and independent variables |
| - increasing and decreasing graphs |
| - use travel graphs to compare the distance travelled to and from school, interpreting and discussing features of travel graphs such as |
| - the slope of lines |
| - the meaning of horizontal line segments |
| - tell the story behind what is being represented in graphs of functions; for example, graphs representing |
| - pouring rates |
| - distance versus time | \& | Use mathematical modelling to solve applied problems involving linear relations, including financial contexts; |
| :--- |
| formulate problems with linear functions, choosing a representation; |
| interpret and communicate solutions in terms of the situation, reviewing the appropriateness of the model |
| - model situations involving linear functions, including practical contexts such as |
| - taxi fares involving flag fall fees |
| - motion in a straight line at a constant speed |
| - trade quotes involving call out fees |
| - cooking that includes resting or cooling times |
| - water leakage from water tanks interpreting the constant rate of change and initial value in context, and identifying when values of a model lie within a given range |
| - model problems in practical situations and interpret solutions within the context of the problem, including giving attention to all units of measure and whether results are suitable; for example, once a water tank is empty no more water can flow from it | \& | Use mathematical modelling to solve applied problems involving change including financial contexts; |
| :--- |
| formulate problems, choosing to use either linear or quadratic functions; interpret solutions in terms of the situation; evaluate the model and report methods and findings |
| - model practical contexts using linear functions such as |
| - cooking times that include resting or cooling times |
| - water leakage from water tanks using tables and graphs or digital tools and algebraically |
| - model measurement situations and determine the perimeter and areas of rectangles where the length, l, of the rectangle is a linear function of its width, w; |
| for example, |
| - $l=w$ |
| - $l=w+5$ |
| - $l=3 w$ |
| - $l=2 w+7$ |
| - model practical contexts using simple quadratic functions, tables and graphs (hand drawn or using digital tools) and algebraically, interpreting features of | \& | Use mathematical modelling to solve applied problems involving growth and decay, including financial contexts; formulate problems, choosing to apply linear, quadratic or exponential models; interpret solutions in terms of the situation; evaluate and modify models as necessary and report assumptions, methods and findings |
| :--- |
| - model situations and choose between linear, quadratic and exponential models by representing relationships in a table of values and recognise that |
| - linear functions have constant first differences |
| - quadratic functions have constant second differences |
| - exponential functions have a constant ratio between consecutive values of the dependent variable |
| - model situations involving exponential growth and decay, and contrast this with linear growth or decay; |
| for example, |
| situations involving constant percentage change and constant ratio; determine doubling time and half-life and approximate intervals for which | \& | The inverse relationship between exponential functions and logarithmic functions and the solution of related equations |
| :--- |
| - use the definition of a logarithm and the exponent laws to establish the logarithm laws |
| - evaluate 10^{x} for decimal values of x and relate this to a logarithm base 10 scale; |
| solve exponential equations algebraically using base 10 logarithms; for example, $\begin{aligned} & 5000 \times 1.01^{x}=10000 \\ & \Rightarrow x=\frac{\log _{10}(2)}{\log _{10}(1.01)} \approx 69.66 \end{aligned}$ |
| and connect to the graph of the corresponding function |
| Describe, interpret and sketch parabolas, hyperbolas, circles and exponential functions and their transformations |
| - recall the connection between algebraic and graphical representations of relations such as |
| - parabolas |
| - reciprocals |
| - circles |
| - exponentials |
| - apply transformations, including translations, reflections in the axes and |

\hline
\end{tabular}

Strand: Algebra

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
	- model financial problems involving pay rates, use a table of values to represent the pay amounts and hours worked using an hourly rate of pay, and graph the relationship to make inferences	the graphs such as the turning point and intercepts in context; for example, - area - paths of projectiles - parabolic mirrors - satellite dishes - model and solve problems involving financial contexts using linear functions; for example, - combinations of purchases of different items when they have a set amount of money to spend - profit/loss situations - trade quotes involving call out fees - model situations involving change; for example, - change in daily temperature during the ski season - fluctuation of speed above and below the speed limit - acceleration and deceleration of a car coming to and moving off from a set of traffic lights	the values of the model lie within a given range - model situations that involve working with authentic information, data and interest rates to calculate compound interest and solve related problems	stretches to help graph parabolas, rectangular hyperbolas, circles and exponential functions
Manipulate formulas involving several variables using digital tools, and describe the effect of systematic variation in the values of the variables - experiment with different sets of tables of values from formulas; for example, using volume of a rectangular prism $=$ length \times width \times height, and specifying a fixed width and equal length and varying the height	Experiment with linear functions and relations using digital tools, make and test conjectures and generalise emerging patterns - use graphing software to investigate the effect of systematically varying parameters of linear functions on the corresponding graphs, making and testing conjectures; for example,	Experiment with the effects of the variation of parameters on graphs of related functions, use digital tools, make connections between graphical and algebraic representations, and generalise emerging patterns - investigate transformations of the graph of $y=x$ to the graph of $y=a x+b$ by systematic variation of a and b and interpret the effects	Experiment with functions and relations using digital tools, make and test conjectures and generalise emerging patterns - apply the graphing zoom functionality of digital tools and systematically refine intervals to identify approximate location of points of intersection of the graphs of 2 functions, such as $x^{2}=2^{x}$ - apply a bisection algorithm to determine the approximate location of the horizontal axis intercepts of the	Use function notation to describe the relationship between dependent and independent variables in modelling contexts - connect y and $f(x)$ - describe $f(x)$ as " f of x " - explore composite functions - explore inverse functions - use function notation in modelling context

Strand: Algebra
 combinations of average speed and time of travel using a table of values and the distance formula
Year 8
Year 9
making a conjecture that if the coefficient of x is negative, then the line will slope down from left to right
use graphing software to systematically contrast the graphs of

- $y=2 x,-y=2 x, y=-2 x$ and
$-y=-2 x$
with those of
- $y<2 x,-y<2 x, y<-2 x$ and
$-y<-2 x$
and those of
- $y>2 x,-y>2 x, y>-2 x$
and $-y>-2 x$
making and testing conjectures about sign and direction of the inequality
- use digital tools to investigate integer solutions to equations such as $2 x+$ $3 y=48$
of these transformations using digital tools;
for example,
- $y=x \rightarrow y=2 x$ (vertical enlargement as $a>1$)
$\rightarrow y=2 x-1$ (vertical translation)
- $y=x \rightarrow y=\frac{1}{2} x$ (vertical compression as $a<1$)
$\rightarrow y=-\frac{1}{2} x$ (reflection in the horizontal axis)
$\rightarrow y=-\frac{1}{2} x+3$ (vertical
translation)
- investigate transformations of the parabola $y=x^{2}$ in the Cartesian plane using digital tools to determine the relationship between graphical and algebraic representations of quadratic functions, including the completed square form;
for example,
- $y=x^{2} \rightarrow y=\frac{1}{3} x^{2}$ (vertical compression as $a<1$)
$\rightarrow y=\frac{1}{3}(x-5)^{2}$ (horizontal translation)
$\rightarrow y=\frac{1}{3}(x-5)^{2}+7$ (vertical translation)
- $y=x^{2} \rightarrow y=2 x^{2}$ (vertical enlargement as $a>1$)
$\rightarrow y=-2 x^{2}$ (reflection in the horizontal axis)
$\rightarrow y=-2(x+6)^{2}$ (horizontal translation)
$\rightarrow y=-2(x+6)^{2}+10$ (vertical translation)

graph of a quadratic function such as $f(x)=2 x^{2}-3 x-7$
- apply transformations to the graph of $x^{2}+y^{2}=1$
- identify the coordinates of any points of intersection of the graph of a linear function with the graph of a quadratic function or a circle
- identify intervals on the real number line over which a given quadratic function is positive or negative
- use a table of values to determine when an exponential growth or decay function exceeds or falls below a given value, such as monitoring the trend in value of a share price in a context of exponential growth or decay

Strand: Algebra

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
		- experiment with digital tools by applying transformations to the graphs of functions, such as - reciprocal $y=\frac{1}{x}$ - square root $y=\sqrt{x}$ - cube $y=x^{3}$ - exponential functions, $y=2^{x}$, $y=\left(\frac{1}{2}\right)^{x},$ identifying patterns		

Achievement standards

Strand: Measurement

The Measurement strand develops ways of quantifying aspects of the human and physical world. Measures and units are defined and selected to be relevant and appropriate to the context. Measurement is used to answer questions, show results, demonstrate value, justify allocation of resources, evaluate performance, identify opportunities for improvement and manage results. Measurement underpins understanding, comparison and decision-making in many personal, societal, environmental, agricultural, industrial, health and economic contexts.

Year 7	Year 8	Year 9	Year 10 and Year 10A Mathematics Pathways
Skills By the end of Year 7, students: - apply knowledge of - angle relationships - the sum of angles in a triangle to solve problems, giving reasons - use formulas for - the areas of triangles and parallelograms - the volumes of rectangular and triangular prisms to solve problems - describe the relationships between the radius, diameter and circumference of a circle.	Skills By the end of Year 8, students: - use appropriate metric units when solving measurement problems involving the - perimeter and area of composite shapes - volume of right prisms - use Pythagoras' theorem to solve measurement problems involving unknown lengths of right-angle triangles - use formulas to solve problems involving the area and circumference of circles - solve problems of duration involving 12- and 24hour cycles across multiple time zones - use 3 dimensions to locate and describe position.	Skills By the end of Year 9, students: - apply formulas to solve problems involving the surface area and volume of right prisms and cylinders - solve problems involving ratio, similarity and scale in two-dimensional situations - determine percentage errors in measurements - apply Pythagoras' theorem and use trigonometric ratios to solve problems involving right-angled triangles - use mathematical modelling to solve practical problems involving direct proportion, ratio and scale, evaluating the model and communicating their methods and findings - express small and large numbers in scientific notation.	Skills By the end of Year 10, students: - interpret and use logarithmic scales representing small or large quantities or change in applied contexts - solve measurement problems involving surface area and volume of composite objects - apply Pythagoras' theorem and trigonometry to solve practical problems involving rightangled triangles - identify the impact of measurement errors on the accuracy of results - use mathematical modelling to solve practical problems involving - proportion and scaling - evaluating and modifying models - reporting assumptions, methods and findings.

Scope and sequence

Strand: Measurement

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways

Solve problems involving the

area of triangles and parallelograms using established formulas and appropriate units

- use the formula for the area of a rectangle and the array structure to derive the formula for the area of a triangle and the area of a parallelogram, given their perpendicular heights;
for example,
establish that the area of a triangle is half the area of an appropriate rectangle by using the spatial relationship between rectangles and different types of triangles
- use dynamic geometry software to demonstrate how the sliding of the vertex of a triangle at a fixed altitude opposite a side leaves the area of the triangle unchanged
- use established formulas to solve practical problems involving the area of triangles, parallelograms and rectangles;
for example,
- estimating the cost of materials needed to make shade sails based on a price per metre
- determining different combinations of dimensions that lead to a given area

Assumed students are now using and converting between metric units across the strands

Solve problems involving the area and

 perimeter of irregular and composite shapes using appropriate units- recall the area of triangles, squares, rectangles and parallelograms
- determine the area of composite shapes by composing or decomposing shapes
- use arrays and rectangles to approximate the area of irregular shapes in situations such as
- a council needing to work out how much mosquito spray to use for a swamp area
- a farmer needing to work out how much seed, fertilizer and herbicide are required to cover a paddock
- determine the perimeter and area of irregular shapes by sums of increasingly accurate covering measurements, such as line segments and grids;
for example,
using millimetres or square millimetres as opposed to centimetres or square centimetres

Solve problems involving the volume and surface area of right prisms and cylinders use appropriate units

- analyse nets of objects to generate short cuts and establish formulas for surface area
- determine the amount of material needed to make can-coolers for a class fundraising project and working out the most cost-efficient way to cut out the pieces
- find different prisms that have the same volume but different surface areas, making conjectures as to what type of prism would have the smallest or largest surface area

Solve problems involving the surface area and volume of composite objects using appropriate units

- determine the volumes and surface areas of composite solids, formed from a range of right prisms and cylinders, by considering the individual solids from which they are constructed
- estimate the surface area and volume of objects in practical contexts
- use mathematical modelling to provide solutions to problems involving surface area and volume;
for example,
ascertain the rainfall that can be saved from a roof top and the optimal shape and dimensions for rainwater storage based on where it will be located on a property
- determine whether to hire extra freezer space for the amount of ice cream required at a fundraising event for the school or community

The effect of increasingly small changes in the value of variables on the average rate of change and in relation to limiting values

- use the gradient of the line segment between two distinct points as a measure of rate of change to obtain numerical approximations to instantaneous speed and interpreting 'tell me a story' piecewise linear position-time graphs

Strand: Measurement

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Solve problems involving the volume of right prisms including rectangular and triangular prisms, using established formulas and appropriate units - build a rectangular prism out of unit cubes and show that the measure of volume is the same as would be found by multiplying the 3 edge lengths or by multiplying the area of the base by the height/length, establishing the formula $V=l \times b \times h$ - develop the connection between the area of the parallel cross-section (base), the height and volume of a rectangular or triangular prism to other prisms, establishing the formula $V=\text { Area of cross section } \times h$ - connect the area of the floor space and the number of floors of a highrise building to calculate the volume of a building - use dynamic geometry software, spatial reasoning and prediction to derive the formula for the volume of prisms	Solve problems involving the volume and capacity of right prisms using appropriate units - use models to demonstrate the number of cubic centimetres in a cubic metre and relate this to capacities of millilitres and litres, recognising that one millilitre is equivalent to one cm^{3} - solve problems involving volume and capacity; for example, optimal packaging and production - choose which measurements are useful to consider when solving practical problems in context; for example, when purchasing a new washing machine, - the dimensions are useful when determining whether it will fit in the available space in the laundry - its capacity is useful when considering the maximum washing load it can carry - investigate, reason and find solutions to measurement problems involving dimensions, rates, volume and capacity of objects; for example, given the dimensions of a pool and the rate of flow from a tap, determine how long it will take to fill the pool to its normal capacity			

Strand: Measurement

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Describe the relationship between π and the features of circles including the circumference, radius and diameter - recognise the features of circles and their relationships to one another; for example, - labelling the parts of a circle including centre, radius, diameter, circumference - using one of radius, diameter or circumference to determine the measure of the other 2 understanding that the diameter is twice the radius, or that the radius is the circumference divided by 2π - compare the circumference of circles in relation to their radius and diameter with materials and measuring, to establish measurement formulas; for example, using a compass to draw several circles, then using string to approximate the circumference, comparing the length of string to the diameter of the circle - investigate π as the constant in the proportional relationship between the circumference of a circle and its diameter, and historical approximations from different civilisations, including Egypt, Babylon, Greece, India and China	Solve problems involving the circumference and area of a circle using formulas and appropriate units - recall the irrational number π from the number strand - deduce that the area of a circle is between 2 radius squares and 4 radius squares, and using $3 \times$ radius 2 as a rough estimate for the area of a circle - investigate the area of circles using a square grid or by rearranging a circle divided into smaller and smaller sectors or slices to resemble a close approximation of a rectangle - apply the formulas for the area and circumference of a circle to solve practical problems, and use one of the measures of radius, diameter, circumference or area to deduce the value of the other measures; for example, determining the length of material needed to edge a round table, given its dimensions as the area of the tabletop			

Strand: Measurement

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
	Solve problems involving duration, including using 12 - and 24 -hour time across multiple time zones - use digital tools to investigate time zones around the world and convert from one zone to another, such as time in Perth, Western Australia compared to Suva in Fiji or Toronto in Canada - recognise the challenges of planning regular virtual meeting times for a company that has both international staff and staff within different states and territories, and the impact daylight savings has due to multiple time zones, explaining the mathematical language used to communicate current time such as Coordinated Universal Time (UTC)+8, AEST, ACST and AWST - plan an international travel itinerary that covers destinations in different time zones across Asia	Solve problems involving very small and very large measurements, time scales and intervals expressed in scientific notation - represent very large and small real numbers in scientific notation, converting real numbers expressed in scientific notation into decimal form; for example, - the approximate geological age of the earth is 4.6×10^{9} years - the mass of a sugar molecule is 5.68×10^{-21} grams - use knowledge of place value and apply exponent laws to operate with numbers expressed in scientific notation in applied contexts; for example, performing calculations involving extremely small numbers in scientific and other contexts - examine the degree of accuracy that different measurement instruments provided in a science laboratory, such as a measuring cylinder compared with a pipette and recording data values to the correct degree of accuracy using appropriate scientific notation	Interpret and use logarithmic scales in applied contexts involving small and large quantities and change - understand that the logarithmic scale is calibrated in terms of order of magnitude; for example, - doubling - powers of 10 - identify and interpret data representations (charts and graphs) that use logarithmic scales and discuss when it is appropriate to use this type of scale and when it is not appropriate; for example, - graphs representing percentage change - a wide range of values - exponential growth - investigate and interpret logarithmic scales used in real-world contexts; for example, - Richter, decibel and sensitivity scales or growth in investments - timescales - the spread of micro-organisms and disease and describe reasons for choosing to use a logarithmic scale rather than a linear scale	

Strand: Measurement

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Identify corresponding, alternate and cointerior relationships between angles formed when parallel lines are crossed by a transversal; use them to solve problems and explain reasons - construct a pair of parallel lines and a pair of perpendicular lines using their properties, a pair of compasses and a ruler, set squares or using dynamic geometry software - use dynamic geometry software to identify relationships between alternate, corresponding and cointerior angles for a pair of parallel lines cut by a transversal - use dynamic geometry software to demonstrate how angles and their properties are involved in the design and construction of - scissor lifts - folding umbrellas - toolboxes - cherry pickers - use geometric reasoning of angle properties to generalise the angle relationships of parallel lines and transversals, and related properties such as - the size of an exterior angle of a triangle is equal to the sum of the sizes of opposite and non-adjacent interior angles - the sum of the sizes of interior angles in a triangle in the plane is equal to the size of 2 right angles or 180°	Recognise and use rates to solve problems involving the comparison of 2 related quantities of different units of measure - identify examples of rates in the real world, including constant rates, rate of pay, cost per kilogram, recipes, simple interest and average rates - apply rates to solve problems involving the conversion between different units of measure; for example, - using a conversion rate to convert distances from miles into kilometres - using currency exchange rates to determine the price of items - apply rates to calculate solutions to problems in different contexts; for example, - required run rates in cricket - dilution of concentrated chemicals - comparing the petrol consumption rates of different vehicles - use taxation tables to calculate an individual's annual income tax			

Strand: Measurement

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Demonstrate that the interior angle sum of a triangle in the plane is 180° and apply this to determine the interior angle sum of other shapes and the size of unknown angles - use concrete materials to demonstrate that the sum of the interior angles of a triangle is 180°; for example, use paper triangles and tearing to demonstrate that the interior angles when combined form 180° - use decomposition and the angle sum of a triangle to generalise the interior angle sum of an n-sided polygon, as $180(n-2)=180 n-360$	Use Pythagoras' theorem to solve problems involving the side lengths of right-angled triangles - investigate Pythagoras' theorem by using the sides of a right-angled triangle to form squares and use their area to establish the formula - discuss and compare different applications, demonstrations and proofs of Pythagoras' theorem, from Egypt and Mesopotamia, Greece, India and China with other historical and contemporary applications and proofs - use Pythagoras' theorem to determine unknown lengths of sides in rightangled triangles and find lengths of sides of right-angled triangles in practical applications - recognise the relationship between the squares of lengths of sides for different types of triangles: right-angled, acute or obtuse - identify Pythagorean triples, such as - $(3,4,5)$ - $(5,12,13)$ - $(7,24,25)$ - $(8,15,17)$	Solve spatial problems, applying angle properties, scale, similarity, Pythagoras' theorem and trigonometry in right-angled triangles - recall Pythagoras' theorem and Pythagorean triples - investigate the applications of Pythagoras' theorem in authentic problems, including applying Pythagoras' theorem and trigonometry to problems in surveying and design - apply the formula for calculation of distances between points on the Cartesian plane from their coordinates, emphasising the connection to vertical and horizontal displacements between the points - understand the relationship between the corresponding sides of similar rightangled triangles and establish the relationship between areas of similar figures and the ratio of corresponding sides, the scale factor - use images of proportional relationships to estimate actual measurements; for example, - taking a photograph of a person standing in front of a tree and using the image and scale to estimate the height of the tree - discussing the findings and ways to improve the estimates - investigate theorems and conjectures involving triangles; for example, - the triangle inequality and generalising links between the Pythagorean rule for right-angled	Solve practical problems applying Pythagoras' theorem and trigonometry of right-angled triangles, including problems involving direction and angles of elevation and depression - recall Pythagoras' theorem, its converse and Pythagorean triples - apply right-angled trigonometry to solve navigation problems involving bearings; for example, determining the bearing and estimating the distance of the final leg of an orienteering course - apply Pythagoras' theorem and trigonometry to problems in surveying and design, where three-dimensional problems are decomposed into twodimensional problems; for example, investigating the dimensions of the smallest box needed to package an object of a particular length - use a clinometer to measure angles of inclination, and apply trigonometry, and proportional reasoning to determine the height of buildings in practical contexts - apply Pythagoras' theorem and trigonometry, and using dynamic geometric software, to design threedimensional models of practical situations involving angles of elevation and depression; for example, modelling a crime scene	

Strand: Measurement

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
		triangles, and related inequalities for acute and obtuse triangles - determining the minimal sets of information for a triangle from which other measures can all be determined - use knowledge of similar triangles, Pythagoras' theorem, rates and algebra to design and construct a Biltmore stick used to measure the diameter and height of a tree, and calculate the density and dry mass to predict how much paper could be manufactured from the tree		
		Calculate and interpret absolute, relative and percentage errors in measurements, recognising that all measurements are estimates - investigate error as a percentage of the exact value; for example, comparing an estimation of the number of people expected to come to an event by subtracting the actual number that turned up to give an error, then converting this into a percentage error - use absolute value in a percentage error formula; considering when they would use the absolute value and when they would not, depending upon the context - calculate the percentage errors in expected budgets to actual expenditure - estimate the accuracy of measurements in practical contexts and give suitable lower and upper bounds for measurement values	Identify the impact of measurement errors on the accuracy of results in practical contexts - describe settings where measurement errors may impact research results and how measurement data impacted by error can result in biased findings - analyse instruments and methods for measuring in investigations and modelling activities - determine the impact that compounding errors have on financial calculations; for example, considering the effect of truncation on money amounts for large scale customer populations	

Assumes working in dollars and cents with money content across the strands post Year 3

Use mathematical modelling to solve

 practical problems involving ratios;formulate problems, interpret and communicate solutions in terms of the situation, justifying choices made about the representation

- use fractions to model and solve ratio problems involving comparison of quantities, and consider part-part and part-whole relations
- model and solve practical problems involving ratios of length, capacity or mass, such as in
- construction
- design
- food
- textile production
for example,
- mixing concrete
- the golden ratio in design
- mixing a salad dressing
- model the situation using manipulatives, diagrams and/or mathematical discussion;
for example,
mixing primary colours in a variety of ratios to investigate how new colours are created and the strength of those colours

Use mathematical modelling to solve practical problems involving ratios and rates, including financial contexts; formulate problems;
interpret and communicate solutions in terms of the situation, reviewing the appropriateness of the model

- model and solve problems related to situations such as
- scales on maps and plans
- the mixing of chemicals or ingredients
- calculating magnification factors applying relevant ratios and proportions
- model problems involving converting money amounts using different exchange rates and applying them when planning and budgeting for overseas travel
- model situations involving financial contexts;
for example,
- income tax, using taxation rates on annual income
- comparing different taxation brackets and rates of pay comparing the benefits of different phone plans using different call rates and associated fees to determine the best plan

Use mathematical modelling to solve practical problems involving direct proportion, rates, ratio and scale, including financial contexts;
formulate the problems and interpret solutions in terms of the situation;
evaluate the model and report methods and findings

- model situations involving direct proportion such as
o pro rata pay rates
- exchange rates
- multiple quotes for a job
- conversion between scales or other appropriate science contexts;
for example,
Hooke's law and other science contexts involving wave lengths and frequencies
- model situations that impact on image editing used in social media and how proportion may not be maintained and can result in distorted images
- model situations involving compliance with building and construction standards in design and construction, such as
- the rise and tread of staircases
- vertical and horizontal components of escalators
- model situations involving the application of rates in practica contexts

Use mathematical modelling to solve practical problems involving proportion and scaling of objects;
formulate problems and interpre solutions in terms of the situation; evaluate and modify models as necessary, and report assumptions, methods and findings

- use plans and elevation drawings to investigate making changes to building designs, employing appropriate scales and converting to actual measurements within the context to make decisions about changes
- analyse and apply scale and ratios in situations such as production prototypes and 3D printing;
for example,
using a 3D printer to produce scaled versions of actual objects
- estimate the scale of an object, such as a toy car, by measuring a linear dimension and using a typical car dimension to work out the scale factor
- investigate compliance with building codes and standards in design and construction, such as for escalators in shopping centres

Strand: Measurement

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
		for example, - density - birth - flow - heartbeats		

Achievement standards

Strand: Space

The Space strand develops ways of visualising, representing and working with the location, direction, shape, placement, proximity and transformation of objects at macro, local and micro scales in natural and constructed worlds. It underpins the capacity to make pictures, diagrams, maps, projections, networks, models and graphics that enable the manipulation and analysis of shapes and objects through actions and the senses. This includes notions such as surface, region, boundary, curve, object, dimension, connectedness, symmetry, direction, congruence and similarity. These notions apply to art, design, architecture, planning, transportation, construction and manufacturing, physics, engineering, chemistry, biology and medicine.

Year 7	Year 8	Year 9	Year 10 and Year 10A Mathematics Pathways
Skills By the end of Year 7, students: - classify polygons according to their features - create an algorithm designed to sort and classify shapes - represent objects two-dimensionally in different ways - describe the usefulness of these representations - use coordinates to describe transformations of points in the plane.	Skills By the end of Year 8, students: - identify conditions for congruency and similarity in shapes - create and test algorithms designed to test for congruency and similarity - apply the properties of quadrilaterals to solve problems.	Skills By the end of Year 9, students: - apply the enlargement transformation to images of shapes and objects, and interpret results - design, use and test algorithms based on geometric constructions or theorems.	Skills By the end of Year 10, students: - use deductive reasoning, theorems and algorithms to solve spatial problems - interpret networks used to represent practical situations and describe connectedness.

Scope and sequence

Strand: Space

Year 7
Represent objects in 2 dimensions;
discuss and reason about the advanta
and disadvantages of different
representations
- recall
- connecting objects to their nets
- building objects from their nets
\quad using spatial and geometric
reasoning
- deconstruct packaging to identify
shapes and nets

- use different nets to construct prisms and determine which nets will make a cube, rectangular prism, triangular prism or pyramid
- use aerial views of buildings and other three-dimensional structures to visualise the footprint made by the building or structure, identifying prisms that could approximate the structure
- use isometric and square grid paper to draw views of front, back, side, top and bottom of objects

Identify the conditions for congruence and similarity of triangles and explain the conditions for other sets of common shapes to be congruent or similar, including those formed by transformations

- recall corresponding, alternate and co-interior angles, and complementary, supplementary, adjacent and vertically opposite angles
- develop an understanding of what it means for shapes to be congruent or similar
- use the enlargement transformation and digital tools to develop sets of similar shapes
- investigate sufficient conditions to establish that 2 triangles are congruent (SSS, SAS, ASA and RHS)
- apply logical reasoning and tests for congruence and similarity, to problems and proofs involving plane shapes
- compare angle and side measurements of shapes under transformation to answer questions such as
- "What changes?"
- "What stays the same?"
- establish that 2 shapes are congruent if one lies exactly on top of the other after one or more transformations including translations, reflections and rotations, and recognising that the matching sides and the matching angles are equal
- solve problems using the properties of congruent figures
Year 9
Year 10

Year 10A Mathematics Pathways

Recognise the constancy of the sine, cosine and tangent ratios for a given angle in right-angled triangles using properties of similarity

- understand the terms "base",
"altitude", "hypotenuse", and
"adjacent" and "opposite" sides to an angle, in a right-angled triangle, and identify these for a given rightangled triangle
- investigate patterns to reason about nested similar triangles that are aligned on a coordinate plane, connecting ideas of parallel sides and identifying the constancy of ratios of corresponding sides for a given angle
- establish an understanding that the sine of an angle can be considered as the length of the altitude of a rightangled triangle with a hypotenuse of length one unit and similarly the cosine as the length of the base of the same triangle, and relate this to enlargement and similar triangles
- relate the tangent of an angle to the altitude and base of nested similar right-angled triangles, and connect the tangent of the angle at which the graph of a straight line meets the positive direction of the horizontal coordinate axis to the gradient of the straight line

Apply deductive reasoning to proofs involving shapes in the plane and use theorems to solve spatial problems

- distinguish between a practical demonstration and a proof; for example,
demonstrating that triangles are congruent by placing them on top of each other, as compared to using congruence tests to establish that triangles are congruent
- develop proofs involving congruent triangles and angle properties, communicating the proof using a sequence of logically connected statements
- apply an understanding of relationships to deduce properties of geometric figures;
for example,
the base angles of an isosceles triangle are equal
- investigate proofs of geometric theorems and use them to solve spatial problems;
for example,
- applying logical reasoning and similarity to proofs
- numerical exercises involving plane shapes;
using visual proofs to justify solutions
- use dynamic geometric software to investigate the shortest path that touches 3 sides of a rectangle, starting and finishing at the same point and prove that the path forms a parallelogram

Relationships between angles and various lines associated with circles (radii, diameters, chords, tangents)

- identify relationships, angles between tangents and chords, angles subtended by a chord with respect to the centre of a circle, and with respect to a point on the circumference of a circle, including using dynamic geometric software
- explore how deductive reasoning and diagrams are used in proving geometric theorems related to circles

Strand: Space

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Classify triangles, quadrilaterals and other polygons according to their side and angle properties; identify and reason about relationships - use digital tools or strips of paper with parallel sides to make triangles and quadrilaterals, and contrast the rigidity of triangles with the flexibility of quadrilaterals - construct triangles with 3 given side lengths and discuss the question, "Can any 3 lengths be used to form the sides of a triangle?" - identify and communicate about side and angle properties of - scalene - isosceles - equilateral - right-angled - acute - obtuse triangles using geometric conventions - describe, compare and contrast squares, rectangles, rhombuses, parallelograms, kites and trapeziums, explaining the relationships between these shapes	Establish properties of quadrilaterals using congruent triangles and angle properties, and solve related problems explaining reasoning - establish the properties of squares, rectangles, parallelograms, rhombuses, trapeziums and kites using geometric properties and proof, such as the sum of the exterior angles of a polygon is equal to a complete turn or 360° - identify properties of quadrilaterals related to side lengths, parallel sides, angles, diagonals and symmetry - apply the properties of triangles and quadrilaterals to construction designs such as - car jacks - scissor lifts - folding umbrellas - toolboxes - cherry pickers			

Strand: Space

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Describe transformations of a set of points using coordinates in the Cartesian plane, translations and reflections on an axis, and rotations about a given point - use digital tools to transform shapes in the Cartesian plane, describing and recording the transformations - describe patterns and investigate different ways to produce the same transformation, such as using 2 successive reflections to provide the same result as a translation - experiment with, create and re-create patterns using combinations of translations, reflections and rotations, using digital tools	Describe the position and location of objects in 3 dimensions in different ways, including using a three-dimensional coordinate system with the use of dynamic geometric software and other digital tools - locate aircraft/drones using latitude, longitude and altitude as a threedimensional coordinate system - construct three-dimensional objects using 3D printers or designing software that uses a three-dimensional coordinate system - compare and contrast two-dimensional and three-dimensional coordinate systems by highlighting what is the same and what is different, including virtual maps versus street views - use dynamic geometry software to construct shapes and objects within the first quadrant of a three-dimensional coordinate system - interpret three-dimensional coordinate locations for objects in multi-storey car parks; play games based on three-dimensional coordinate systems such as threedimensional Noughts and Crosses (Tic-Tac-Toe)		Interpret networks and network diagrams used to represent relationships in practical situations and describe connectedness - recall Euler's formula $F+V=E+2 \text { to planar graphs, }$ platonic solids and other polyhedra - investigate how networks and network diagrams can be used to model authentic situations, recognising what real world quantity is represented by the nodes (vertices), and what real world quantity is represented by the links between them (edges) - investigate the use of graphs to represent a network, analysing connectedness; for example, investigating the "The Seven Bridges of Königsberg" problem - investigate how polyhedra can be represented as a network using edges, vertices, interior and exterior faces; representing the number of edges, vertices and faces in a table and demonstrating how Euler's formula $F+V=E+2$ applies - investigate how a social network, intranet, local area network (LAN), electrical wiring or wireless network of a home can be represented as a network diagram to specify relationships;	Establish the sine, cosine and area rules for any triangle and solve related problems - explore and establish the sine rule and cosine rule - establish the area of a non-right angled triangle - solve problems using the knowledge of sine, cosine and area rules - apply knowledge of sine, cosine and area rules to authentic problems such as those involving surveying and design

Strand: Space

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
		Apply the enlargement transformation to shapes and objects using dynamic geometry software as appropriate; identify and explain aspects that remain the same and those that change - compare the ratio of lengths of corresponding sides of similar triangles and angles - use the properties of similarity to solve problems involving enlargement - investigate and generalise patterns in length, angle, area and volume when side lengths of shapes and objects are enlarged or dilated by whole and rational numbers; for example, comparing an enlargement of a square and a cube of side length 2 units by a factor of 3 increases the area of the square, 2^{2}, to $(3 \times 2)^{2}=9 \times 2^{2}=9$ times the original area and the volume of the cube, 2^{3}, to $(3 \times 2)^{3}=27 \times 2^{3}=27 \text { times }$ the volume	for example, - using network diagrams to investigate practical problems involving connections, power overload or the need for routers - investigate the use of networks to represent authentic situations; for example, - rail or air travel between or within London, Paris, Hong Kong - a food web representing a simple eco-system - metabolic networks and other chemical or biological structures	

Strand: Space

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Design and create algorithms involving a sequence of steps and decisions that will sort and classify sets of shapes according to their attributes, and describe how the algorithms work - create a classification scheme for - triangles based on sides and angles, using a flow chart using sequences and decisions - regular, irregular, concave or convex polygons that are sorted according to the number of sides - create a flow chart for quadrilaterals that shows the relationships between trapeziums, parallelograms, rhombuses, rectangles, squares and kites	Design, create and test algorithms involving a sequence of steps and decisions that identify congruency or similarity of shapes, and describe how the algorithm works - list the properties or criteria necessary to determine if shapes are similar or congruent - use the conditions for congruence of triangles and similarity of triangles to develop a sorting algorithm; for example, creating a flow chart - evaluate algorithms for accuracy in classifying and distinguishing between similar and congruent triangles	Design, test and refine algorithms involving a sequence of steps and decisions based on geometric constructions and theorems; discuss and evaluate refinements - create an algorithm using pseudocode or flow charts to apply the triangle inequality, or an algorithm to generate Pythagorean triples - create and test algorithms designed to construct or bisect angles, using pseudocode or flow charts - develop an algorithm for an animation of a geometric construction, or a visual proof, evaluating the algorithm using test cases	Design, test and refine solutions to spatial problems using algorithms and digital tools; communicate and justify solutions - design and make scale models of threedimensional objects using digital tools; for example, - making components of a puzzle using a three-dimensional printer - planning and designing the puzzle using principles of tessellations - apply a computational thinking approach to solving problems involving networks; for example, - connectedness, coverage and weighted measures - taking different routes and choosing the most efficient route to take when travelling by car using virtual map software - define and decompose spatial problems, create and apply algorithms to generate solutions, evaluate and communicate solutions in terms of the problem; for example, designing a floor plan for a department store that limits congestion at key areas such as checkouts, changing rooms and popular sale items	

Achievement standards

Strand: Statistics

The Statistics strand develops ways of collecting, understanding, and describing data and its distribution. Statistics provides a story, or a means to support or question an argument, and enables exploratory data analysis that underpins decision-making and informed judgement. Statistical literacy requires an understanding of statistical information and processes, including an awareness of data and the ability to estimate, interpret, evaluate and communicate with respect to variation in the real world. Statistical literacy provides a basis for critical scrutiny of an argument, the accuracy of representations, and the validity and reliability of inferences and claims. The effective use of data requires acknowledging and expecting variation in the collection, analysis and interpretation of data arising for categorical and numerical variables. Statistics is used in business, government, research, sport, healthcare and media for critical and informed evaluation of issues, arguments and decision-making.

Year 7	Year 8	Year 9	Year 10 and Year 10A Mathematics Pathways
Skills By the end of Year 7, students: - plan and conduct statistical investigations involving discrete and continuous numerical data using appropriate displays - interpret data in terms of the shape of distribution and summary statistics, identifying possible outliers - decide which measure of central tendency is most suitable and explain their reasoning.	Skills By the end of Year 8, students: - conduct statistical investigations and explain the implications of obtaining data through sampling - analyse and describe the distribution of data - compare the variation in distributions of random samples of the same and different size from a given population with respect to - shape - measures of central tendency - range.	Skills By the end of Year 9, students: - compare and analyse the distributions of multiple numerical data sets, choose representations, describe features of these data sets using summary statistics and the shape of distributions, and consider the effect of outliers - explain how sampling techniques and representation can be used to support or question conclusions or to promote a point of view.	Skills By the end of Year 10, students: - plan and conduct statistical investigations involving bivariate data - represent the distribution of data involving 2 variables, using tables and scatter plots, and comment on possible association - analyse inferences and conclusions in the media, noting potential sources of bias - compare the distribution of continuous numerical data, using various displays, and discuss distributions in terms of centre, spread, shape and outliers.

Scope and sequence

Strand: Statistics

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Acquire data sets for discrete and continuous numerical variables and calculate the range, median, mean and mode; make and justify decisions about which measures of central tendency provide useful insights into the nature of the distribution of data - understand that summarising data by calculating measures of centre can help make sense of the data, commenting on skewness or symmetry of data and the use of mean and median as representative measures - compare the mean, median, mode and range of displays of data from a given context, and explain how outliers may affect summary statistics - recognise how different data sets can have the same measures of central tendency and experiment with how varying data affects these measures - acquire continuous numerical data by taking measurement samples during a science experiment, observation or field study, compare measures of central tendency and identify any anomalies in the distribution of data	Investigate techniques for data collection including census, sampling, experiment and observation, and explain the practicalities and implications of obtaining data through these techniques - identify situations where data can be collected by census and those where a sample is appropriate - investigate the practicalities and implications of obtaining data through sampling, using a variety of investigative processes; for example, investigating situations when - random sampling - non-random sampling is used to collect data and the implication of each sampling method - discuss how observations, experiments and sampling methods can be impacted by bias; for example, - recognise that a sampling bias occurs when certain members of a population are more likely to be selected in a sample than others, such as a survey conducted at a shopping centre; - recognise that environmental conditions may bias the results of scientific investigations if experiments are conducted at different times or under different conditions	Analyse reports of surveys in digital media and elsewhere for information on how data was obtained to estimate population means and medians - investigate and evaluate statistical reports in the media and other places by linking claims to displays, statistics and representative data - investigate a range of data and its sources; for example, - the age of residents in Australia, Cambodia and Tonga - the number of subjects studied at school in a year by 14 -year-old students in Australia, Singapore, Japan, South Korea and Timor-Leste - analyse reports of public opinion surveys on environmental issues, such as - land clearing - wind farms - single use plastics; discussing methods of data collection and the reasonableness of any inferences made	Analyse claims, inferences and conclusions of statistical reports in the media, including ethical considerations and identification of potential sources of bias - identify potentially misleading data representations in the media such as graphs with broken axes and scales that do not start at zero or are nonlinear; recognising when data is not related to the claim, not representative of the population or is deliberately being used to mislead, or support a claim or biased point of view - investigate - the source and size of the sample from which the data was collected and decide whether the sample is appropriately representative of the population - population rates and discuss potential ethical considerations when presenting statistical data involving infection rates, and the number of cases per head of population - use secondary data to predict the number of people likely to be infected with a strain of flu or experience side effects with a certain medication, discussing the ethical considerations of reporting of such data to the wider public, considering validity claims and samples sizes	Measures of spread, their interpretation and usefulness with respect to different data distributions - compare the use of quantiles, percentiles, and cumulative frequency to analyse the distribution of data - compare measures of spread for different data distributions, such as mean or median absolute deviations with standard deviations, and explore the effect of outliers

Strand: Statistics

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
	- use digital tools such as - digital microscopes - simulations - digital measuring devices to observe, measure and record qualitative and quantitative data, discussing precision and the implications of error			
	Analyse and report on the distribution of data from primary and secondary sources using random and non-random sampling techniques to select and study samples - investigate different methods of sampling used to collect data, considering the source and size of samples - compare the sampling methods of simple random, systematic, stratified, quota, clustered or convenience, or judgement, and discuss the reliability of conclusions about the context that could be drawn - define and distinguish between probabilistic terms such as random, sample space, sample and sample distribution	Analyse how different sampling methods can affect the results of surveys and how choice of representation can be used to support a particular point of view - investigate and analyse different visualisations of data such as infographics found in the media and comment on the strengths, weaknesses and possible biases of particular examples - discuss the impact of decreased landline usage or an increased aversion to answering calls from unknown numbers on survey data	Compare data distributions for continuous numerical variables using appropriate data displays including boxplots; discuss the shapes of these distributions in terms of centre, spread, shape and outliers in the context of the data - construct and interpret box plots and use them to compare data sets, understanding that box plots are an efficient and common way of representing and summarising data and can facilitate comparisons between data sets - compare shapes of distributions using box plots, histograms, cumulative frequency graphs and dot plots, discussing symmetry, skew and modality - use digital tools to compare boxplots and histograms as displays of the same data in the light of the statistical questions being addressed and the effectiveness of the display in helping to answer the question - find the five-number summary (minimum and maximum values, median, and upper and lower quartiles) and using its graphical representation, the box plot, as tools for both	Calculate and interpret the mean and standard deviation of data and use these to compare data sets - use the standard deviation to describe the spread of a set of data - use the mean and standard deviation to compare numerical data sets

Strand: Statistics

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
			numerically and visually comparing the centre and spread of data sets with and without technology - compare the information that can be extracted and the stories that can be told about continuous and discrete numerical data sets that have been displayed in different ways, including histograms, dot plots, box plots and cumulative frequency graphs	
Create different types of numerical data displays including stem-and-leaf plots using software where appropriate; describe and compare the distribution of data, comment on the shape and spread including outliers and determine the range, median, mean and mode - use ordered stem-and-leaf plots to record and display numerical data collected in a class investigation, such as constructing a class plot of height in centimetres on a shared stem-and-leaf plot for which the stems $12,13,14,15$, 16 and 17 have been produced - compare variation in attributes by category using split stem-and-leaf plots or dot plots; interpreting the shape of the distribution using qualitative terms to describe symmetry or skewness, or "average" in terms of the mean, median and mode, and the amount of variation based on qualitative descriptions of the spread of the data - connect features of the data display; for example, - highest frequency - clusters	Compare variations in distributions and proportions obtained from random samples of the same size drawn from a population and recognise the effect of sample size on this variation - recall mean, median, mode and range - compare the proportion of students in favour of a proposal for a change in school uniform between different random samples of 50 students from the school population - use digital tools to simulate repeated sampling of the same population, such as heights or arm spans of students, recording and comparing means, median and range of data between samples - use relative frequencies from historical data to predict proportions and the likely number of outcomes in situations such as - weather forecasting - the countries of origin of visitors to tourist attractions	Represent the distribution of multiple data sets for numerical variables using comparative representations; compare data distributions with consideration of centre, spread and shape, and the effect of outliers on these measures - describe the shape of the distribution of data using terms such as "positive skew", "negative skew" and "symmetric" and "bi-modal" - use stem-and-leaf plots to compare 2 like sets of data such as the heights of girls and the heights of boys in a class - construct grouped histograms that show trends in health issues such as - lung cancer - leukemia - stroke - diabetes and use the graph to justify, verify or invalidate claims	Construct scatterplots and comment on the association between the 2 numerical variables in terms of strength, direction and linearity - discuss the difference between association and cause and effect, and relate this to situations such as health, diversity of species and climate control - use statistical evidence to make, justify and critique claims about association between variables, such as in contexts of - climate change - migration - online shopping - social media - informally use a line of good fit by eye to discuss reliability of any predictions	Use information technologies to investigate bivariate numerical data sets. Where appropriate use a straight line to describe the relationship allowing for variation - investigate different techniques for finding a 'line of best fit', such as 'by inspection' or using linear regression using technology - explore interpolation and extrapolation and the trend of being reliable or not reliable

Strand: Statistics

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
- gaps - symmetry - skewness to the mode, range and median, and the question in context; describing the shape of distributions using terms such as - "positive skew" - "negative skew" - "symmetric" - "bi-modal" and discuss the location of the median and mean on these distributions - use mean and median to compare data sets, identify possible outliers and explain how these may affect the comparison - recognise how different displays make specific information about data more evident, including proportions, and measures of mean, mode or median, spread and extreme values - understand that the median and the mean will be the same or similar for symmetric distributions but different for distributions that are skewed - compare the mean and median of data with and without extremes; for example, estimation of standard measures for length or mass, informally considering for a given set of data what might constitute an unexpected, unusual or extreme data value	- investigate the effect that adding or removing data from a data set has on measures of central tendency and spread	Choose appropriate forms of display or visualisation for a given type of data; justify selections and interpret displays for a given context - compare data displays using mean, median and range to describe and interpret numerical data sets in terms of centre and spread using histograms, dot plots, or stem-and-leaf plots - choose the type of representations based on the data type: categorical (nominal or ordinal) or numerical (discrete or continuous) use different visualisations of data, including non-standard representations such as infographics, and discuss their purpose, intended audience; evaluating how well they communicate responses to statistical questions of interest - compare and interpret stacked bar charts, area charts and line graphs, discussing how they represent larger categories that can be subdivided into smaller categories and how information that can be obtained from these displays can be used for comparison	Construct two-way tables and discuss possible relationship between categorical variables - use two-way tables to investigate and compare the survey responses to questions involving five-point Likert scale against 2 different categories of respondents; for example, junior compared to senior students' responses to a survey question - record data in two-way tables and use percentages and proportions to identify patterns and associations in the data - conduct a litter survey around the school, considering the relationship between different categorical variables such as - the day of the week as canteen specials might lead to different types of litter - the weather due to hot days leading to more ice blocks and cold drinks being sold	

Strand: Statistics

| Year 7 |
| :---: | :---: |

Plan and conduct statistical investigations involving discrete and continuous numerical variables;
analyse and interpret distributions of data and report findings in terms of shape and summary statistics

- conduct an investigation to
- draw conclusions about whether teenagers have faster reaction times than adults
- support claims that a modification of a Science, Technology, Engineering and Mathematics (STEM) related design has improved performance
Year 8

Year 9

Plan and conduct statistical investigations involving samples of a population; use ethical and fair methods to make inferences about the population and report findings, acknowledging uncertainty

- use data such as electricity consumption to draw conclusions about the impacts of events, such as pandemics, on households or business
- identify situations where the collection of data from a sample is necessary due to efficiency, cost or restricted time for collection of data, and sufficiently reliable for making inferences about a population

Plan and conduct statistical investigations involving the collection and analysis of different kinds of data;
report findings and discuss the strength of evidence to support any conclusions

- plan and conduct an investigation using questions together with analysis of secondary data set collected from online data bases such as the Australian Bureau of Statistics
- plan and conduct an investigation relating to consumer spending habits; modelling market research on what teenagers are prepared to spend on technology compared to clothing with consideration of sample techniques and potential sources of bias

Plan and conduct statistical investigations of situations that involve bivariate data;
evaluate and report findings with consideration of limitations of any inferences

- design statistical investigations that collect bivariate data over time through observation, experiment or measurement;
graphing, interpreting and analysing data;
reporting within the context of the statistical investigation question
- investigate anecdotal claims include those concerning climate, housing affordability and natural resources, with consideration of data validity and limitations of interpolation or extrapolation
- use a statistical investigation to address the question, "Is there a relationship between vaccines and immunity from a virus"

Achievement standards

Strand: Probability

The Probability strand develops ways of dealing with uncertainty and expectation, making predictions, and characterising the chance of events, or how likely events are to occur from both empirical and theoretical bases. It provides a means of considering, analysing and utilising the chance of events, and recognising random phenomena for which it is impossible to exactly determine the next observed outcome before it occurs. In contexts where chance plays a role, probability provides experimental and theoretical ways to quantify how likely it is that a particular event will occur or a proposition is the case. This enables students to understand contexts involving chance and to build mathematical models surrounding risk and decision-making in a range of areas of human endeavour. These include finance, science, business management, epidemiology, games of chance, computer science and artificial intelligence.

Year 7	Year 8	Year 9	Year 10 and Year 10A Mathematics Pathways
Skills By the end of Year 7, students: - list sample spaces for single step experiments - assign probabilities to outcomes - predict relative frequencies for related events - conduct repeated single-step chance experiments - run simulations using digital tools - give reasons for differences between predicted and observed results.	Skills By the end of Year 8, students: - represent the possible combinations of 2 events with tables and diagrams, and determine related probabilities to solve practical problems - conduct experiments and simulations using digital tools to determine related probabilities of compound events.	Skills By the end of Year 9, students: - determine sets of outcomes for compound events and represent these in various ways - assign probabilities to the outcomes of compound events - design and conduct experiments or simulations for combined events using digital tools.	Skills By the end of Year 10, students: - apply conditional probability to solve problems involving compound events - design and conduct simulations involving conditional probability, using digital tools.

Scope and sequence

Strand: Probability

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Identify the sample space for singlestage events; assign probabilities to the outcomes of these events and predict relative frequencies for related events - discuss the meaning of probability terminology; for example, - "probability" - "sample space" - "favourable outcome" - "trial" - "experiment" - "event" - list sample spaces for games involving throwing a coin or a die, spinners, or lucky dip - assign the probability for throwing a 6 on a die and use this to predict the number times a 6 will occur when a die is thrown multiple times	Recognise that complementary events have a combined probability of one; use this relationship to calculate probabilities in applied contexts - recall concept of probabilities, outcomes, sample spaces and events - understand that knowing the probability of an event allows the probability of its complement to be found, including for those events that are not equally likely, such as getting a specific novelty toy in a supermarket promotion - use the relationship that for a single event A, $\operatorname{Pr}(A)+\operatorname{Pr}(\operatorname{not} A)=1$ for example, if the probability that it rains on a particular day is 80%, the probability that it does not rain on that day is 20%, or the probability of not getting a 6 on a single roll of a fair dice is $1-\frac{1}{6}=\frac{5}{6}$ - use the sum of probabilities to solve problems, such as the probability of starting a game by throwing a 5 or 6 on a die is $\frac{1}{3}$ and probability of not throwing a 5 or 6 is $\frac{2}{3}$	List all outcomes for compound events both with and without replacement, using lists, tree diagrams, tables or arrays; assign probabilities to outcomes - discuss two-step chance experiments, such as the game of Heads and tails, describing the different outcomes and their related probabilities - use systematic methods such as lists or arrays to record outcomes and assign probabilities, such as drawing the names of students from a bag to appoint 2 team leaders - use a tree diagram to represent a threestage event and assign probabilities to these events; for example, selecting 3 cards from a deck, assigning the probability of drawing an ace, then a king, then a queen of the same suit, with and without replacing the cards after every draw - assign probabilities to compound events involving the random selection of people from a given population; for example, selecting 2 names at random from all of the students at a high school and assigning the probability that they are both in Year 9	Use the language of "if then", "given", "of", "knowing that" to describe and interpret situations involving conditional probability - use two-way tables and Venn diagrams to understand conditional statements using the language of - "if ... then ..." - "given" - "of" - "knowing that" and identify common mistakes in interpreting such language - use arrays and tree diagrams to represent, interpret and compare probabilities of dependent and independent events	Counting principles, and factorial notation as a representation that provides efficient counting in multiplicative contexts, including calculations of probabilities - apply the multiplication principle to problems involving combinations including probabilities related to sampling with and without replacement, and represent these using tree diagrams - understand that a set with n elements has 2^{n} different subsets formed by considering each element for inclusion or not in combination, and that these can be systematically listed using a tree diagram or a table, for example, the set $\{a, b, c\}$ has $2^{3}=8$ subsets which are $\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} .$ - use the definition of n ! to represent and calculate in contexts that involve choices from a set for example, how many different combinations of 3 playing cards from a pack? How many of the suits are ignored? How many with and without replacement? - perform calculations on numbers expressed in factorial form, such as $\frac{n!}{r!}$ to evaluate the number of possible arrangements of n objects in a row, r of which are identical,

Strand: Probability

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
				for example, 5 objects, 3 of which are identical, can be arranged in a row in $\frac{5!}{3!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1}=20 \text { different ways }$
	Determine all possible combinations for 2 events, using two-way tables, tree diagrams and Venn diagrams, and use these to determine probabilities of specific outcomes in practical situations - describe events using language of - "at least" - exclusive "or" (A or B but not both) - inclusive "or" (A or B or both) - "and" - use the relation $\operatorname{Pr}(A$ and $B)+\operatorname{Pr}(A$ and not $B)+$ $\operatorname{Pr}($ not A and $B)+$ $\operatorname{Pr}(\operatorname{not} A$ and $\operatorname{not} B)=1$ to calculate probabilities, including the special case of mutually exclusive events $\text { where } \operatorname{Pr}(A \text { and } B)=0$ - use Venn diagrams or two-way tables to demonstrate the difference between events that are mutually exclusive, such as - whether a coin toss will land on a head or a tail or those that are not mutually exclusive, such as - people who have blonde hair and people who have blue eyes	Calculate relative frequencies from given or collected data to estimate probabilities of events involving "and", inclusive "or" and exclusive "or" - understand that relative frequencies from large data sets or long-run experiments can provide reliable measures of probability and can be used to make predictions of decisions - use Venn diagrams or two-way tables to estimate frequencies of events involving "and", "or" questions		

Strand: Probability

Year 7	Year 8	Year 9	Year 10	Year 10A Mathematics Pathways
Conduct repeated chance experiments and run simulations with a large number of trials using digital tools; compare predictions about outcomes with observed results, explaining the differences - develop an understanding of the law of large numbers through using experiments and simulations to conduct large numbers of trials for seemingly random events and discuss findings - conduct simulations using online simulation tools and compare the combined results of a large number of trials to predicted results	Conduct repeated chance experiments and simulations, using digital tools to determine probabilities for compound events, and describe results - use digital tools to conduct probability simulations involving compound events - use a random number generator and digital tools to simulate rolling 2 dice and calculate the difference between them, investigating what difference is likely to occur more often - use online simulation software to conduct probability simulations to determine in the long run if events are complementary	Design and conduct repeated chance experiments and simulations, using digital tools to compare probabilities of simple events to related compound events, and describe results - use digital tools to conduct probability simulations that demonstrate the relationship between the probability of compound events and the individual probabilities - compare experiments which differ only by being undertaken with replacement or without replacement - conduct two-step chance experiments using systematic methods to list outcomes of experiments and to list outcomes favourable to an event	Design and conduct repeated chance experiments and simulations using digital tools to model conditional probability and interpret results - use samples of different sizes with and without replacement from a population to identify when the difference in methods becomes negligible - recognise that an event can be dependent on another event and that this will affect the way its probability is calculated - use simulations to gather data on frequencies for situations involving chance that appear to be counterintuitive, such as - the three-door problem - the birthday problem - identify situations in real-life where probability simulations are used for decision-making, such as - supply and demand of product - insurance risk - queueing - use simulation to predict the number of people likely to be infected with a strain of flu or virus	

This scope and sequence document references and is adapted from the Australian Curriculum Version 9.0 <www.australiancurriculum.edu.au>. Australian Curriculum material is licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0. Version updates are tracked in the 'Curriculum version history' section on the 'About the Australian Curriculum' page http://australiancurriculum.edu.au/about-the-australian-curriculum/ of the Australian Curriculum website.

