Scope and sequence Digital Technologies Reception to year 6

V1.0 September 2020

Department for Education

© Government of South Australia, Department for Education,

Digital Technologies: Scope and sequence reception to year 6

Contents

Context statement

Achievement standards

Scope and sequence

- Strand: Knowledge and understanding
 - Thread: Digital systems
 - Thread: Representation of data
- Strand: Process and production skills; creating digital solutions by:
 - Thread: Collecting, managing and analysing data
 - Thread: Investigating and defining
 - Thread: Generating and designing
 - Thread: Producing and implementing
 - Thread: Evaluating
 - Thread: Collaboration and management

Context statement

Digital Technologies is about exciting interest in computer science. It is about empowering students to understand how the devices they use actually work. Students will develop the confidence to create digital solutions.

Computational, systems and design thinking are fundamental to Digital Technologies learning.

Computational thinking is a problem-solving process involving:

- Pattern Recognition: understanding trends, similarities and patterns in data to define problems
- Decomposition: breaking down complex problems into simpler parts
- Abstraction: identifying and removing unnecessary details to simplify a problem
- Algorithmic design: creating a step by step solution to a problem
- Modelling and simulation: implementing the steps to identify and fix 'bugs' or mistakes
- Evaluating: testing out solutions with different audiences. This makes sure the solutions meet the needs of the end user, as well as contribute to preferred futures

Systems thinking is the ability to see the big picture. Students need to understand the impact of digital solutions. They need to see the solution through legal, ethical and sustainability lenses.

Design thinking is the process of imagining, creating and realising solutions.

When using these thinking strategies together, students can develop powerful digital solutions.

This document:

- provides explicit plain English interpretation of the Australian Curriculum content descriptors
- identifies the specific knowledge, skills and understanding learners need at each year level
- guides educators to teach and model computational, systems and design thinking
- supports educators with the processes to design, create and produce digital solutions

Reception to year 2	Years 3 to 4	
 Reception to year 2 By the end of year 2, students: identify how common digital systems (hardware and software) are used to meet specific purposes use digital systems to represent simple patterns in data in different ways design solutions to simple problems using a sequence of steps and decisions collect familiar data and display them to convey meaning create and organise ideas and information using information systems, and share information in safe online environments. 	 Years 3 to 4 By the end of year 4, students: describe how a range of digital systems (hardware and software) and their peripheral devices can be used for different purposes explain how the same data sets can be represented in different ways define simple problems, design and implement digital solutions using algorithms that involve decision-making and user input explain how the solutions meet their purposes collect and manipulate different data when creating information and digital solutions safely use and manage information systems for identified needs using agreed protocols and describe how information systems are used. 	 By the end of year 6, students explain the fundamentals networks) and how digital system variety of data types define problems in terms solutions by developing a incorporate decision-mak designs and implement th explain how information s sustainability manage the creation and collaborative digital proje

Years 5 to 6

nts:

- als of digital system components (hardware, software and ital systems are connected to networks ems use whole numbers as a basis for representing a
- ns of data and functional requirements and design g algorithms to address the problems aking, repetition and user interface design into their their digital solutions, including a visualprogram n systems and their solutions meet needs and consider
- nd communication of ideas and information in ojects using validated data and agreed protocols.

Strand: Knowledge and understanding

Threads	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Digital systems How do computers work and interact? Students use systems thinking to understand how the component parts inside digital systems (like hardware and software) work, both individually and together across networks.	A system is a group of parts that work together. Digital systems include computers, phones, tablets, and other digital devices.	Digital systems have many parts. They work with inputs and outputs. For example • identify parts of digital systems as inputs and outputs - the keyboard and mouse put information in. The screen and speakers send information out.	Digital systems are made up of hardware and software that can be used for specific purposes. For example • hardware is the equipment we can see, touch and feel inside and out of a computer. • software are the programs we use to give instructions to computers. We cannot really touch and feel them but we can see and hear the outputs.	Peripheral devices can be added to a digital system so that it works with more inputs and outputs. For example • Peripheral devices include hardware items like microphones, earphones, cameras and printers.	Digital systems and peripheral devices are used for different purposes and can store and transmit different types of data For example • An image that is input from a camera is broken down into pixels and stored as a smaller file. This image can later be used as an output such as an image in a visual presentation.	 Digital systems are made up of many component parts that support the processing of inputs and outputs. The output of a digital system can be images, sound and text that can be sent to other systems in a network. For example Component parts are the individual pieces of hardware that are part of a larger digital system. A network is a collection of digital systems that are connected together to allow data to be shared. 	Digital systems are made up of many component parts which: receive inputs process data into information store information to be retrieved and used later produce an output that may be images, sound or text. When digital systems are connected together by wires or wirelessly, they form a network. Networks of digital systems allow data to be shared quickly and efficiently locally and across the world. For example Artificial Intelligence systems learn from the data it collects and adapts to new

© Government of South Australia, Department for Education,

Digital systems send and Patterns in data can be The same types of data can be Representation of data Symbols and pictures can be Agreed ways of representing represented in different ways used to represent data. Data receive information. recognised, explored and data helps users to work with can include numbers, images, represented using digital digital systems. including images, sound and Information can be How do computers process sound and text. represented using symbols. systems. text. information? For example • Agreed codes can be For example For example For example For example Students use systems thinking • universal symbols convey • a barrier game where a Patterns are learned and used to • Bar codes and QR to understand data as codes. meaning such as send and receive codes are examples of person describes a repeated Guiding a sequences such as using image codes to simple image while the messages In upper primary, students build indicate information friend on a other person draws is an doubling numbers Semaphore and sign their knowledge so that computers • treasure hunt example of sending and • Predictions can be • Creating and solving language are just can be understood as integrated using a map receiving information codes using the systems which deliver images, made by noticing two examples of drawing identifying the meaning practices of ٠ how a pattern agreed codes. sound and text using electrical behind the colours on cryptography impulses. These impulses are arrows to continues. represented using the binary represent the Aboriginal flag is an directions. example of exploring the number system. ways symbols can represent important ideas.

Images, sound and text can be represented using combinations of whole	Whole numbers are used to represent all data in digital systems.				
numbers.	Systems.				
 For example Text can be represented as whole 	The binary number system is a commonly used way of representing data in digital systems using sequences of 1s				
numbers using the	and Os.				
 ASCII (American Standard Code for Information Interchange); images can be represented as whole numbers using the RGB (red, green and blue) values in pixels. Whole numbers can be represented as binary digits or 1s and 0s. 	 For example Electrical wires inside digital systems, can only register two states like on or off. Just one wire allows two choices like yes or no, true or false, high or low. This on/off state can be represented with binary digits or bits: 1s and 0s. Digital systems contain complex electric circuitry, with multiple wires. This allows for many more choices, so that large amounts of data can be represented. 				

Strand: Process and production skills - Creating digital solutions by:

Threads	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Collecting, managing and analysing	Collect, organise and display	Collect, organise and display	Collect, explore and sort	Collect and present different	Collect, access and present	Use a range of software to	Acquire, store and validate
data	familiar data using symbols	familiar data to find patterns	familiar data, and use digital	types of data using digital	different types of data using	collect, organise and present	different types of data and use
	and pictures.	in information.	systems to present the data	tools to show useful	simple software to create	new and existing data sets as	a range of software to
How do I find problems that need			creatively.	information.	information and solve	useful information.	interpret and visualise data to
solving?	Use information from data	Pose questions and make			problems.		create information.
501VIII 5.	to pose exploratory	inferences using patterns in	Use information from data	Use data sets and		For example	
Students develop the computational	questions.	data.	investigations to define a	investigate information to	Define a problem using the	 investigate questions 	For example
thinking strategy of pattern			need, opportunity or problem	find problems that need	needs and opportunities	that are relevant to	• investigate data for bias,
recognition. It is about noticing the	For example:	For example	that could be solved.	solving.	revealed in the information	students' experiences	sources and reliability.
patterns in the data that is collected	 Pose questions 	develop inquiry		<u> </u>	taken from data sets.	like eg "What is a	• investigate data sets to
and identifying a problem. They	such as 'How do	questions eg 'what do	For example	For example		healthy amount of	answer questions that
organise data into information so	we get to	people eat for lunch?'	make predictions	• present information	For example	screen time?"	relate to digital solutions
that patterns can be easily seen and	school?' With	 with support, create 	about the answers to	from data creatively	• collect and organise data	 collect and organise 	eg 'how do we know when
problems identified.	support make	graphs so that	a question, eg 'what	in order to pinpoint	sets using software, like	data visually in order	our indoor plants are
problems identified.	statements	inferences can be	is a family?'	problems, trends and	spreadsheets, to more	to easily identify	thirsty?' and 'how much
Chudente con concepto the in cum	based on	made easily.	 collect data in 	patterns	easily identify a need or	needs, opportunities	exercise should we be
Students can generate their own	graphically	made cashy.	response to the	patterno	problem.	or problems related to	doing every day?'
data or they can access large 'open	organised data		question and			screen use.	
data sets' available online. Data is	like 'Most people		compare actual			screen use.	
all around us and there are many	drive to school'		results with				
ways to use data to find patterns.							
			predictions.				
Invoctigating and defining	Generate solution ideas for	Generate and organise	Break identified problems or	Break identified problems	Define simple problems, and	Define a problem using data	Define problems in terms of
Investigating and defining	problems identified in data	solution ideas.	tasks down into workable	down into their component	describe and follow a	sets as evidence for needs or	data and functional
	•	solution lueas.					
How do I break a problem down to	or questions.		parts so that a solution can be	parts and generate solution	sequence of steps and	opportunities.	requirements, drawing on
make it more manageable?		Identify a preferred solution	achieved.	ideas.	decisions (algorithms) needed	E a martina da	previously solved problems.
	Break down solution ideas	and break it down into			to solve them.	For example	
Students use the Computational	into achievable steps.	achievable steps.	For example	Identify digital tools that		develop a problem	For example
Thinking strategy of decomposition.			represent the steps to	could be used as part of a	For example	statement based on	identify problems and
They decompose (break down) a	For example:	For example	a solution in different	solution process.	a simple problem	research like 'kids can get	define them specifically
problem into more manageable	• consider a global	• generate the steps to	ways – verbally, a flow		may include building	hurt if they put too much	by breaking them down
parts to make it easier to solve in a	instruction like 'brush	achieve an everyday	chart or diagram.	For example	a model out of	information online'	into solvable parts, eg
logical sequence of steps.	your teeth' and break	task like blowing up a	• check to see if the	 investigate 	blocks without	• investigate solution ideas	indoor plants often die
	it down into very	balloon or making a	steps are specific	instructions given to	instructions	like providing kid-friendly	because they are watered
	specific steps.	sandwich	enough and can be	'robots' to arrive at a	 identify and record 	information about	too much or too little.
		 act out the steps to see 	followed by another	destination	the specific steps to	protecting themselves in	How can we build a
		if there are any details	user.	 Make decisions about 	create the model.	online situations.	moisture indicator to
		missing.		the best path for it to			determine when the
				follow.			plant needs water?
Generating and designing	Explore simple digital tools	Explore and evaluate simple	Investigate simple digital	Identify problems that are	Investigate the effectiveness	Identify the useful features	Design a user interface for a
	and notice how they can be	digital tools based on	solutions and how they solve	solved by digital solutions	of a range of digital solutions	of a digital system and how	digital system to solve a
What is the best digital solution to	used to solve simple	personal preferences.	problems for the user.	and suggest how they may	according to the problems	it solves problems for users.	problem or perform a
a problem?	problems.			change in the future.	they solve or tasks they	Suggest improvements or	particular task.
		For example	For example		complete.	modifications.	
Students use the Computational	For example	• identify digital tools	make decisions	Identify simple problems			Design, modify and follow
Thinking strategy of algorithmic	 identify the arrow 	used by friends and	about which tool to	and represent the solution	Design or modify an	Design or modify an	simple algorithms involving
design and abstraction.	keys on a 'robot' as	family and how they	use and for what	as a sequence of steps	algorithm that represents a	algorithm showing a logical	sequences of steps, branching,
	a simple way to	are used – phone to	purpose, using	(algorithm).	digital solution.	sequence of steps.	and iteration (repetition).
An algorithm is an efficient and	give it instructions	call a relative, a laptop	paint software to				
-	Bive it motifications	to write.	select and make	For example	Consider ways of showing a	For example	For example
specific sequence of steps to solve a		to write.	pictures or using	explore the use of	decision between 2 or more	identify how digital	 design a flow chart to
problem.			stylus (or finger) to	• explore the use of 'robots' in	options	systems meet the	demonstrate
				industries		needs of diverse	decisions between
Student develop a step by step			create original				
process (algorithm) to solve a			drawings.	 experiment with 	For example	users eg screen	two options

problem. They learn how to get rid of unnecessary detail (abstraction) to identify a more efficient set of steps.				using a visual program to instruct a 'robot'.	 develop a flow chart that shows instructions for a simple task with a decision between two options. 	 magnifiers for a vision impaired person or icons instead of words for a really young user. develop algorithms that use conditional statements, eg if there is an object in the way, then move around. 	responds to input from a user or sensor.
Producing and implementing What are the steps to solving a problem? Students use the Computational Thinking strategy of modelling and simulation. They try out the steps to solve a problem in a controlled environment. This helps to identify "bugs" in the algorithms	Identify and follow a sequence of steps (algorithm) needed to perform simple tasks or solve a simple problem. For example • use images or verbally describe a sequence such as using a story map to show the beginning, middle and end of a story	Describe and record the steps (algorithm) required to complete a simple task or solve a simple problem, using symbols, picture, diagrams or movements. For example • use images or verbal instructions to describe the steps to achieve a simple task such as making a sandwich	 Follow, describe and represent a sequence of steps and decisions (algorithms) needed to solve simple problems or complete simple tasks. For example arrange images to show how to choose what to wear in different circumstances, eg if it's cold, wear a jumper. If not, wear a t-shirt. 	Use a visual program to create a digital solution to a simple problem and test it out on an identified user. For example • observe the way a 'robot' works • design a logical sequence of steps for a 'robot' to follow	 Implement simple digital solutions as visual programs with algorithms involving branching (decisions) and user input For example create a visual program to direct a character/'robot' through a maze with many dead ends 	 Identify how a digital solution can be made more efficient by grouping instructions or iterations (repetition). For example implement a program that uses 'loops' or repeated instructions, for example 'move forward 2 steps until touching a boundary'. modify a program to refine it into a more efficient set of instructions. 	 Implement digital solutions as simple visual programs involving branching, iteration (repetition), and user input For example develop a flow chart (algorithm) to plan and create a visual program. manipulate fixed and variable data in a visual program, eg calculate the number of steps taken as measured by a digital pedometer – the 'number' of steps actually taken is the variable data. The goal of 10,000 steps could be the fixed data.

Evaluating Have I created the best solution for the end user? Students use the Computational Thinking strategy of testing. They test out solutions with identified users and seek feedback to improve, further debug or redefine the problem.	Use personal preferences to evaluate the success of simple solutions or the outcomes of simple tasks. For example • play games where answers are yes or no – is it an animal? Is it yellow? • take turns to see who can ask the least questions in order to guess the item	Use agreed criteria to evaluate the success of simple solutions or the outcomes of tasks For example • Consider whether they have used the smallest number of steps to get a 'robot' from one place to another.	 Work with others to explore how people safely use common information systems to meet information, communication and recreation needs Develop criteria for success based on user preference. Evaluate solutions against success criteria. For example interview friends and family about games they enjoy and why from this, co-develop a criteria rubric for a 'good' game 	Evaluate how people use common information and digital solutions to meet common personal, school or community needs. For example • describe common information systems like online encyclopaedias and how they are used to find information. • Identify how to verify an information source as credible.	 Explain how student solutions and existing information systems meet common personal, school or community needs. For example explain information systems used by people in local or global communities and the problems they solve, eg how using mapping software allows us to see places that are far away. 	Explain how testing a solution as well as user feedback contribute to the development of common information systems and student solutions. For example • identify errors in existing solutions and adapt or improve upon them (debug) • incorporate user feedback into digital solutions.	 Explain how student solutions and existing information systems are sustainable and meet current and future local community needs For example explain how digital and information systems need updating test existing solutions or information systems and improve them by incorporating user feedback.
Collaborating and managing How do I work with others to create a solution? Students develop an understanding of how to use agreed social and ethical protocols when designing solutions and when interacting with others online. They also develop an understanding of how to work productively and safely with others in a face to face environment. They develop the skills to manage a project from start to finish.	 Work with others to identify and use agreed processes. Collaboratively solve problems and use digital systems safely. For example with support, co- develop rules for working safely and cooperatively with shared technology tools 	 Work with others to create and organise ideas and information using information systems safely. Identify trusted networks with whom to safely share information. For example: create a picture book where each member of the group contributes to a different part of the story. share stories in safe, teacher managed, digital environments 	Create and organise ideas and information using information systems independently and with others, and share these with known people in safe online environments For example • select information from a variety of sources to create a presentation such as images and text to tell a story using a slide deck. • share presentations in secure online environments.	Identify information that is safe to share with others and information that should only be shared with trusted networks. Establish and use practices that demonstrate cyber safety when participating in online environments For example • Create a fictitious character profile and identify which information would be safe for them to share online and which they would need to keep private. • Identify networks of trusted people to report examples of inappropriate online behaviour.	 Plan, create and communicate ideas and information independently and with others. Apply agreed ethical and social protocols. For example develop and use safe and secure processes for communicating information and ideas online develop a plan to complete a collaborative project from start to finish using appropriate digital tools 	Identify the ways to develop positive digital identities and the ways to protect self and others online. Plan, create and communicate ideas and information independently and with others. Apply agreed ethical and social protocol For example • identify and demonstrate the characteristics of a responsible digital citizen • plan and carry out digital projects in collaboration with others using agreed roles and responsibilities	 Plan, create and communicate ideas and information, including online collaboration. Apply agreed ethical, social and technical protocols. For example understand the ways that personal data is collected and used in information systems and digital solutions establish agreed protocols when creating, managing and producing information in collaborative digital projects.